About the Project

inverse trigonometric functions

AdvancedHelp

(0.013 seconds)

41—50 of 100 matching pages

41: 19.6 Special Cases
42: 15.12 Asymptotic Approximations
  • (d)

    z > 1 2 and α 1 2 π + δ ph c α + + 1 2 π δ , where

    15.12.1 α ± = arctan ( ph z ph ( 1 z ) π ln | 1 z 1 | ) ,

    with z restricted so that ± α ± [ 0 , 1 2 π ) .

  • 15.12.6 ζ = arccosh z .
    15.12.10 ζ = arccosh ( 1 4 z 1 ) ,
    43: 25.14 Lerch’s Transcendent
    25.14.6 Φ ( z , s , a ) = 1 2 a s + 0 z x ( a + x ) s d x 2 0 sin ( x ln z s arctan ( x / a ) ) ( a 2 + x 2 ) s / 2 ( e 2 π x 1 ) d x , a > 0 if | z | < 1 ; s > 1 , a > 0 if | z | = 1 .
    44: 3.11 Approximation Techniques
    3.11.6 T n ( x ) = cos ( n arccos x ) , 1 x 1 .
    45: 30.15 Signal Analysis
    30.15.11 arccos B + arccos α = arccos Λ 0 ,
    46: 5.4 Special Values and Extrema
    5.4.20 x n = n + 1 π arctan ( π ln n ) + O ( 1 n ( ln n ) 2 ) .
    47: 22.20 Methods of Computation
    22.20.4 ϕ n 1 = 1 2 ( ϕ n + arcsin ( c n a n sin ϕ n ) ) ,
    48: 19.9 Inequalities
    Throughout this subsection we assume that 0 < k < 1 , 0 ϕ π / 2 , and Δ = 1 k 2 sin 2 ϕ > 0 . … where gd 1 ( ϕ ) is given by (4.23.41) and (4.23.42). … (19.9.15) is useful when k 2 and sin 2 ϕ are both close to 1 , since the bounds are then nearly equal; otherwise (19.9.14) is preferable. Inequalities for both F ( ϕ , k ) and E ( ϕ , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). …
    U = 1 2 arctanh ( sin ϕ ) + 1 2 k 1 arctanh ( k sin ϕ ) .
    49: 10.20 Uniform Asymptotic Expansions for Large Order
    10.20.3 2 3 ( ζ ) 3 2 = 1 z t 2 1 t d t = z 2 1 arcsec z , 1 z < ,
    50: 32.11 Asymptotic Approximations for Real Variables
    32.11.27 σ = ( 2 / π ) arcsin ( π λ ) ,