About the Project

高中毕业证等级h《做证微fuk7778》100

AdvancedHelp

(0.002 seconds)

21—30 of 305 matching pages

21: Bibliography K
  • E. G. Kalnins (1986) Separation of Variables for Riemannian Spaces of Constant Curvature. Longman Scientific & Technical, Harlow.
  • M. Koecher (1954) Zur Theorie der Modulformen n -ten Grades. I. Math. Z. 59, pp. 399–416 (German).
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • T. H. Koornwinder (1989) Meixner-Pollaczek polynomials and the Heisenberg algebra. J. Math. Phys. 30 (4), pp. 767–769.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • 22: 28.2 Definitions and Basic Properties
    28.2.2 ζ ( 1 ζ ) w ′′ + 1 2 ( 1 2 ζ ) w + 1 4 ( a 2 q ( 1 2 ζ ) ) w = 0 .
    28.2.3 ( 1 ζ 2 ) w ′′ ζ w + ( a + 2 q 4 q ζ 2 ) w = 0 .
    28.2.26 a 2 n ( q ) = a 2 n ( q ) ,
    28.2.28 b 2 n + 2 ( q ) = b 2 n + 2 ( q ) .
    23: 10.2 Definitions
    These solutions of (10.2.1) are denoted by H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) , and their defining properties are given by … The principal branches of H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) are two-valued and discontinuous on the cut ph z = ± π . … For fixed z ( 0 ) each branch of H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) is entire in ν . … Except where indicated otherwise, it is assumed throughout the DLMF that the symbols J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) denote the principal values of these functions. … The notation 𝒞 ν ( z ) denotes J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
    24: Bibliography F
  • R. H. Farrell (1985) Multivariate Calculation. Use of the Continuous Groups. Springer Series in Statistics, Springer-Verlag, New York.
  • J. D. Fay (1973) Theta Functions on Riemann Surfaces. Springer-Verlag, Berlin.
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • G. D. Finn and D. Mugglestone (1965) Tables of the line broadening function H ( a , v ) . Monthly Notices Roy. Astronom. Soc. 129, pp. 221–235.
  • C. H. Franke (1965) Numerical evaluation of the elliptic integral of the third kind. Math. Comp. 19 (91), pp. 494–496.
  • 25: 28.26 Asymptotic Approximations for Large q
    28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
    28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
    Then as h + with fixed z in z > 0 and fixed s = 2 m + 1 , … The asymptotic expansions of Fs m ( z , h ) and Gs m ( z , h ) in the same circumstances are also given by the right-hand sides of (28.26.4) and (28.26.5), respectively. … For asymptotic approximations for M ν ( 3 , 4 ) ( z , h ) see also Naylor (1984, 1987, 1989).
    26: 28.1 Special Notation
    m , n integers.
    a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
    The functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are also known as the radial Mathieu functions. …
    g e , n ( h ) ,
    g o , n ( h ) ,
    The radial functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are denoted by Mc n ( j ) ( z , q ) and Ms n ( j ) ( z , q ) , respectively.
    27: 29.9 Stability
    The Lamé equation (29.2.1) with specified values of k , h , ν is called stable if all of its solutions are bounded on ; otherwise the equation is called unstable. If ν is not an integer, then (29.2.1) is unstable iff h a ν 0 ( k 2 ) or h lies in one of the closed intervals with endpoints a ν m ( k 2 ) and b ν m ( k 2 ) , m = 1 , 2 , . If ν is a nonnegative integer, then (29.2.1) is unstable iff h a ν 0 ( k 2 ) or h [ b ν m ( k 2 ) , a ν m ( k 2 ) ] for some m = 1 , 2 , , ν .
    28: Bibliography M
  • H. Maass (1971) Siegel’s modular forms and Dirichlet series. Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin.
  • F. A. McDonald and J. Nuttall (1969) Complex-energy method for elastic e -H scattering above the ionization threshold. Phys. Rev. Lett. 23 (7), pp. 361–363.
  • J. W. Meijer and N. H. G. Baken (1987) The exponential integral distribution. Statist. Probab. Lett. 5 (3), pp. 209–211.
  • G. W. Morgenthaler and H. Reismann (1963) Zeros of first derivatives of Bessel functions of the first kind, J n ( x ) , 21 n 51 , 0 x 100 . J. Res. Nat. Bur. Standards Sect. B 67B (3), pp. 181–183.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • 29: 28.25 Asymptotic Expansions for Large z
    For fixed h ( 0 ) and fixed ν , …
    28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
    The upper signs correspond to M ν ( 3 ) ( z , h ) and the lower signs to M ν ( 4 ) ( z , h ) . The expansion (28.25.1) is valid for M ν ( 3 ) ( z , h ) when …and for M ν ( 4 ) ( z , h ) when …
    30: Bibliography S
  • S. Sandström and C. Ackrén (2007) Note on the complex zeros of H ν ( x ) + i ζ H ν ( x ) = 0 . J. Comput. Appl. Math. 201 (1), pp. 3–7.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • B. W. Shore and D. H. Menzel (1968) Principles of Atomic Spectra. John Wiley & Sons Ltd., New York.
  • H. Skovgaard (1954) On inequalities of the Turán type. Math. Scand. 2, pp. 65–73.
  • H. Suzuki, E. Takasugi, and H. Umetsu (1998) Perturbations of Kerr-de Sitter black holes and Heun’s equations. Progr. Theoret. Phys. 100 (3), pp. 491–505.