About the Project

order glyburide canada no prescription cheaP-pHarma.com/?id=1738

AdvancedHelp

(0.030 seconds)

11—20 of 276 matching pages

11: 10.3 Graphics
§10.3(i) Real Order and Variable
§10.3(ii) Real Order, Complex Variable
§10.3(iii) Imaginary Order, Real Variable
See accompanying text
Figure 10.3.18: J ~ 1 ( x ) , Y ~ 1 ( x ) , 0.01 x 10 . Magnify
See accompanying text
Figure 10.3.19: J ~ 5 ( x ) , Y ~ 5 ( x ) , 0.01 x 10 . Magnify
12: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • L. Lorch (1992) On Bessel functions of equal order and argument. Rend. Sem. Mat. Univ. Politec. Torino 50 (2), pp. 209–216 (1993).
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • E. R. Love (1972a) Addendum to: “Changing the order of integration”. J. Austral. Math. Soc. 14, pp. 383–384.
  • 13: 11.1 Special Notation
    §11.1 Special Notation
    x real variable.
    ν real or complex order.
    n integer order.
    14: 9.15 Mathematical Applications
    Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
    15: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • 16: Bibliography F
  • E. M. Ferreira and J. Sesma (2008) Zeros of the Macdonald function of complex order. J. Comput. Appl. Math. 211 (2), pp. 223–231.
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
  • 17: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 18: 14.26 Uniform Asymptotic Expansions
    §14.26 Uniform Asymptotic Expansions
    19: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    20: Sidebar 9.SB1: Supernumerary Rainbows
    Photograph by Dr. Roy Bishop, Physics Department, Acadia University, Nova Scotia, Canada. See Bishop (1981). ©R. L. Bishop.