About the Project
NIST

swallowtail canonical integral

AdvancedHelp

(0.002 seconds)

1—10 of 12 matching pages

1: 36.2 Catastrophes and Canonical Integrals
Normal Forms Associated with Canonical Integrals: Cuspoid Catastrophe with Codimension K
Canonical Integrals
2: 36.3 Visualizations of Canonical Integrals
Figure 36.3.2: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 3 ) | .
Figure 36.3.3: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 0 ) | .
Figure 36.3.4: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , - 3 ) | .
Figure 36.3.5: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , - 7.5 ) | .
Figure 36.3.14: Density plots of phase of swallowtail canonical integrals.
3: 36.6 Scaling Relations
§36.6 Scaling Relations
4: 36.9 Integral Identities
§36.9 Integral Identities
5: 36.7 Zeros
§36.7(iv) Swallowtail and Hyperbolic Umbilic Canonical Integrals
The zeros of these functions are curves in x = ( x , y , z ) space; see Nye (2007) for Φ 3 and Nye (2006) for Φ ( H ) .
6: 36.11 Leading-Order Asymptotics
§36.11 Leading-Order Asymptotics
7: 36.8 Convergent Series Expansions
§36.8 Convergent Series Expansions
8: 36.5 Stokes Sets
§36.5(ii) Cuspoids
§36.5(iv) Visualizations
9: 36.12 Uniform Approximation of Integrals
For further information concerning integrals with several coalescing saddle points see Arnol’d et al. (1988), Berry and Howls (1993, 1994), Bleistein (1967), Duistermaat (1974), Ludwig (1966), Olde Daalhuis (2000), and Ursell (1972, 1980).
10: 36.10 Differential Equations
K = 3 , swallowtail: …