About the Project

machine precision

AdvancedHelp

(0.002 seconds)

3 matching pages

1: 3.1 Arithmetics and Error Measures
The machine precision is 1 2 ϵ M = 2 p . … The respective machine precisions are 1 2 ϵ M = 0.596 × 10 7 , 1 2 ϵ M = 0.111 × 10 15 and 1 2 ϵ M = 0.963 × 10 34 . … Symmetric rounding or rounding to nearest of x gives x or x + , whichever is nearer to x , with maximum relative error equal to the machine precision 1 2 ϵ M = 2 p . …
2: Bibliography B
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • R. P. Brent (1978a) A Fortran multiple-precision arithmetic package. ACM Trans. Math. Software 4 (1), pp. 57–70.
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • 3: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • R. Chattamvelli and R. Shanmugam (1997) Algorithm AS 310. Computing the non-central beta distribution function. Appl. Statist. 46 (1), pp. 146–156.
  • J. A. Christley and I. J. Thompson (1994) CRCWFN: Coupled real Coulomb wavefunctions. Comput. Phys. Comm. 79 (1), pp. 143–155.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • J. W. Cooley and J. W. Tukey (1965) An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (90), pp. 297–301.