About the Project

interpolation

AdvancedHelp

(0.001 seconds)

11—19 of 19 matching pages

11: 3.11 Approximation Techniques
If J = n + 1 , then p n ( x ) is the Lagrange interpolation polynomial for the set x 1 , x 2 , , x J 3.3(i)). … For many applications a spline function is a more adaptable approximating tool than the Lagrange interpolation polynomial involving a comparable number of parameters; see §3.3(i), where a single polynomial is used for interpolating f ( x ) on the complete interval [ a , b ] . …
12: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates J 0 ( x ) , J 1 ( x ) , x = 0 ( .001 ) 16 ( .01 ) 25 , 10D; Y 0 ( x ) , Y 1 ( x ) , x = 0.01 ( .01 ) 25 , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of Y 0 ( x ) , Y 1 ( x ) for small values of x , as well as auxiliary functions to compute all four functions for large values of x .

  • British Association for the Advancement of Science (1937) tabulates I 0 ( x ) , I 1 ( x ) , x = 0 ( .001 ) 5 , 7–8D; K 0 ( x ) , K 1 ( x ) , x = 0.01 ( .01 ) 5 , 7–10D; e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , x = 5 ( .01 ) 10 ( .1 ) 20 , 8D. Also included are auxiliary functions to facilitate interpolation of the tables of K 0 ( x ) , K 1 ( x ) for small values of x .

  • Young and Kirk (1964) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 10 , 15D; ber n x , bei n x , ker n x , kei n x , modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , 2 , x = 0 ( .01 ) 2.5 , 8S, and n = 0 ( 1 ) 10 , x = 0 ( .1 ) 10 , 7S. Also included are auxiliary functions to facilitate interpolation of the tables for n = 0 ( 1 ) 10 for small values of x . (Concerning the phase functions see §10.68(iv).)

  • 13: Bibliography B
  • J. Berrut and L. N. Trefethen (2004) Barycentric Lagrange interpolation. SIAM Rev. 46 (3), pp. 501–517.
  • R. Bulirsch and H. Rutishauser (1968) Interpolation und genäherte Quadratur. In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.), Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 141, pp. 232–319.
  • 14: Bibliography D
  • P. J. Davis (1975) Interpolation and Approximation. Dover Publications Inc., New York.
  • 15: Bibliography G
  • W. Gautschi (1992) On mean convergence of extended Lagrange interpolation. J. Comput. Appl. Math. 43 (1-2), pp. 19–35.
  • 16: Bibliography F
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • 17: Bibliography S
  • I. J. Schoenberg (1973) Cardinal Spline Interpolation. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • 18: 3.5 Quadrature
    The nodes x 1 , x 2 , , x n are prescribed, and the weights w k and error term E n ( f ) are found by integrating the product of the Lagrange interpolation polynomial of degree n 1 and w ( x ) . …
    19: Errata
  • Equations (15.2.3_5), (19.11.6_5)

    These equations, originally added in Other Changes and Other Changes, respectively, have been assigned interpolated numbers.