About the Project

Sines

AdvancedHelp

(0.001 seconds)

21—30 of 300 matching pages

21: 6.16 Mathematical Applications
§6.16(i) The Gibbs Phenomenon
6.16.1 sin x + 1 3 sin ( 3 x ) + 1 5 sin ( 5 x ) + = { 1 4 π , 0 < x < π , 0 , x = 0 , 1 4 π , π < x < 0 .
6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … The first maximum of 1 2 Si ( x ) for positive x occurs at x = π and equals ( 1.1789 ) × 1 4 π ; compare Figure 6.3.2. …
22: 6.19 Tables
§6.19(ii) Real Variables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • 23: 4.15 Graphics
    See accompanying text
    Figure 4.15.1: sin x and cos x . Magnify
    Figure 4.15.7 illustrates the conformal mapping of the strip 1 2 π < z < 1 2 π onto the whole w -plane cut along the real axis from to 1 and 1 to , where w = sin z and z = arcsin w (principal value). …
    See accompanying text
    Figure 4.15.7: Conformal mapping of sine and inverse sine. w = sin z , z = arcsin w . Magnify
    See accompanying text
    Figure 4.15.8: sin ( x + i y ) . Magnify 3D Help
    24: 6.15 Sums
    §6.15 Sums
    6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
    6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
    25: 6.21 Software
    §6.21(ii) E 1 ( x ) , Ei ( x ) , Si ( x ) , Ci ( x ) , Shi ( x ) , Chi ( x ) , x
    §6.21(iii) E 1 ( z ) , Si ( z ) , Ci ( z ) , Shi ( z ) , Chi ( z ) , z
    26: 4.20 Derivatives and Differential Equations
    4.20.1 d d z sin z = cos z ,
    4.20.2 d d z cos z = sin z ,
    4.20.7 d n d z n sin z = sin ( z + 1 2 n π ) ,
    4.20.12 w = A cos ( a z ) + B sin ( a z ) ,
    4.20.13 w = ( 1 / a ) sin ( a z + c ) ,
    27: 4.40 Integrals
    4.40.1 sinh x d x = cosh x ,
    4.40.2 cosh x d x = sinh x ,
    4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
    4.40.11 arcsinh x d x = x arcsinh x ( 1 + x 2 ) 1 / 2 .
    28: 23.11 Integral Representations
    23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
    23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
    29: 6.4 Analytic Continuation
    6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
    6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
    Unless indicated otherwise, in the rest of this chapter and elsewhere in the DLMF the functions E 1 ( z ) , Ci ( z ) , Chi ( z ) , f ( z ) , and g ( z ) assume their principal values, that is, the branches that are real on the positive real axis and two-valued on the negative real axis.
    30: 10.12 Generating Function and Associated Series
    cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
    sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
    sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
    sin z = 2 J 1 ( z ) 2 J 3 ( z ) + 2 J 5 ( z ) ,
    1 2 z sin z = 4 J 2 ( z ) 16 J 4 ( z ) + 36 J 6 ( z ) .