27.6 Divisor Sums27.8 Dirichlet Characters

§27.7 Lambert Series as Generating Functions

Lambert series have the form

27.7.1\sum _{{n=1}}^{\infty}f(n)\frac{x^{n}}{1-x^{n}}.

If |x|<1, then the quotient x^{n}/(1-x^{n}) is the sum of a geometric series, and when the series (27.7.1) converges absolutely it can be rearranged as a power series:

27.7.2\sum _{{n=1}}^{\infty}f(n)\frac{x^{n}}{1-x^{n}}=\sum _{{n=1}}^{\infty}\sum _{{d\divides n}}f(d)x^{n}.

Again with |x|<1, special cases of (27.7.2) include:

27.7.3\sum _{{n=1}}^{\infty}\mathop{\mu\/}\nolimits\!\left(n\right)\frac{x^{n}}{1-x^{n}}=x,
27.7.4\sum _{{n=1}}^{\infty}\mathop{\phi\/}\nolimits\!\left(n\right)\frac{x^{n}}{1-x^{n}}=\frac{x}{(1-x)^{2}},
27.7.5\sum _{{n=1}}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}}=\sum _{{n=1}}^{\infty}\mathop{\sigma _{{\alpha}}\/}\nolimits\!\left(n\right)x^{n},
27.7.6\sum _{{n=1}}^{\infty}\mathop{\lambda\/}\nolimits\!\left(n\right)\frac{x^{n}}{1-x^{n}}=\sum _{{n=1}}^{\infty}x^{{n^{2}}}.