27.2 Functions27.4 Euler Products and Dirichlet Series

§27.3 Multiplicative Properties

Except for \mathop{\nu\/}\nolimits\!\left(n\right), \mathop{\Lambda\/}\nolimits\!\left(n\right), p_{n}, and \mathop{\pi\/}\nolimits\!\left(x\right), the functions in §27.2 are multiplicative, which means f(1)=1 and

27.3.1f(mn)=f(m)f(n),\left(m,n\right)=1.

If f is multiplicative, then the values f(n) for n>1 are determined by the values at the prime powers. Specifically, if n is factored as in (27.2.1), then

27.3.2f(n)=\prod _{{r=1}}^{{\mathop{\nu\/}\nolimits\!\left(n\right)}}f(p^{{a_{r}}}_{r}).

In particular,

Related multiplicative properties are

27.3.7\mathop{\sigma _{{\alpha}}\/}\nolimits\!\left(m\right)\mathop{\sigma _{{\alpha}}\/}\nolimits\!\left(n\right)=\sum _{{d\divides\left(m,n\right)}}d^{\alpha}\mathop{\sigma _{{\alpha}}\/}\nolimits\left(\frac{mn}{d^{2}}\right),
27.3.8\mathop{\phi\/}\nolimits\!\left(m\right)\mathop{\phi\/}\nolimits\!\left(n\right)=\mathop{\phi\/}\nolimits\!\left(mn\right)\mathop{\phi\/}\nolimits\!\left(\left(m,n\right)\right)/\left(m,n\right).

A function f is completely multiplicative if f(1)=1 and

27.3.9f(mn)=f(m)f(n),m,n=1,2,\dots.

Examples are \left\lfloor 1/n\right\rfloor and \mathop{\lambda\/}\nolimits\!\left(n\right), and the Dirichlet characters, defined in §27.8.

If f is completely multiplicative, then (27.3.2) becomes

27.3.10f(n)=\prod _{{r=1}}^{{\mathop{\nu\/}\nolimits\!\left(n\right)}}\left(f(p_{r})\right)^{{a_{r}}}.