Digital Library of Mathematical Functions
About the Project
27 Functions of Number TheoryMultiplicative Number Theory

§27.3 Multiplicative Properties

Except for ν(n), Λ(n), pn, and π(x), the functions in §27.2 are multiplicative, which means f(1)=1 and

27.3.1 f(mn)=f(m)f(n),

If f is multiplicative, then the values f(n) for n>1 are determined by the values at the prime powers. Specifically, if n is factored as in (27.2.1), then

27.3.2 f(n)=r=1ν(n)f(prar).

In particular,

27.3.3 ϕ(n) =np|n(1-p-1),
27.3.4 Jk(n) =nkp|n(1-p-k),
27.3.5 d(n) =r=1ν(n)(1+ar),
27.3.6 σα(n) =r=1ν(n)prα(1+ar)-1prα-1,

Related multiplicative properties are

27.3.7 σα(m)σα(n)=d|(m,n)dασα(mnd2),
27.3.8 ϕ(m)ϕ(n)=ϕ(mn)ϕ((m,n))/(m,n).

A function f is completely multiplicative if f(1)=1 and

27.3.9 f(mn)=f(m)f(n),

Examples are 1/n and λ(n), and the Dirichlet characters, defined in §27.8.

If f is completely multiplicative, then (27.3.2) becomes

27.3.10 f(n)=r=1ν(n)(f(pr))ar.