About the Project

variation of real or complex functions

AdvancedHelp

(0.024 seconds)

31—40 of 603 matching pages

31: 4.28 Definitions and Periodicity
4.28.3 cosh z ± sinh z = e ± z ,
4.28.5 csch z = 1 sinh z ,
4.28.6 sech z = 1 cosh z ,
4.28.7 coth z = 1 tanh z .
4.28.12 sec ( i z ) = sech z ,
32: 20.3 Graphics
§20.3(ii) θ -Functions: Complex Variable and Real Nome
§20.3(iii) θ -Functions: Real Variable and Complex Lattice Parameter
See accompanying text
Figure 20.3.21: θ 4 ( 0 | u + i v ) , 1 u 1 , 0.005 v 0.1 . Magnify 3D Help
33: 22.3 Graphics
§22.3(iii) Complex z ; Real k
§22.3(iv) Complex k
See accompanying text
Figure 22.3.24: sn ( x + i y , k ) for 4 x 4 , 0 y 8 , k = 1 + 1 2 i . … Magnify 3D Help
See accompanying text
Figure 22.3.25: sn ( 5 , k ) as a function of complex k 2 , 1 ( k 2 ) 3.5 , 1 ( k 2 ) 1 . … Magnify 3D Help
See accompanying text
Figure 22.3.26: Density plot of | sn ( 5 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
34: 11.10 Anger–Weber Functions
11.10.6 f ( ν , z ) = ( z ν ) π z 2 sin ( π ν ) , w = 𝐉 ν ( z ) ,
11.10.7 f ( ν , z ) = 1 π z 2 ( z + ν + ( z ν ) cos ( π ν ) ) , w = 𝐄 ν ( z ) .
11.10.9 𝐄 ν ( z ) = sin ( 1 2 π ν ) S 1 ( ν , z ) cos ( 1 2 π ν ) S 2 ( ν , z ) ,
11.10.34 2 𝐉 ν ( z ) = 𝐉 ν 1 ( z ) 𝐉 ν + 1 ( z ) ,
11.10.35 2 𝐄 ν ( z ) = 𝐄 ν 1 ( z ) 𝐄 ν + 1 ( z ) ,
35: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.3 d d z tanh z = sech 2 z ,
4.34.4 d d z csch z = csch z coth z ,
4.34.5 d d z sech z = sech z tanh z ,
36: 4.14 Definitions and Periodicity
4.14.3 cos z ± i sin z = e ± i z ,
4.14.4 tan z = sin z cos z ,
4.14.5 csc z = 1 sin z ,
4.14.6 sec z = 1 cos z ,
4.14.7 cot z = cos z sin z = 1 tan z .
37: 22.11 Fourier and Hyperbolic Series
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.8 ds ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.9 cs ( z , k ) π 2 K cot ζ = 2 π K n = 1 q 2 n sin ( 2 n ζ ) 1 + q 2 n ,
22.11.10 dc ( z , k ) π 2 K sec ζ = 2 π K n = 0 ( 1 ) n q 2 n + 1 cos ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.12 sc ( z , k ) π 2 K k tan ζ = 2 π K k n = 1 ( 1 ) n q 2 n sin ( 2 n ζ ) 1 + q 2 n .
38: 31.3 Basic Solutions
31.3.7 ( 1 z ) 1 δ H ( 1 a , ( ( 1 a ) γ + ϵ ) ( 1 δ ) + α β q ; α + 1 δ , β + 1 δ , 2 δ , γ ; 1 z ) .
39: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
17.5.5 ϕ 1 1 ( a c ; q , c / a ) = ( c / a ; q ) ( c ; q ) .
40: 20.7 Identities
20.7.1 θ 3 2 ( 0 , q ) θ 3 2 ( z , q ) = θ 4 2 ( 0 , q ) θ 4 2 ( z , q ) + θ 2 2 ( 0 , q ) θ 2 2 ( z , q ) ,
20.7.2 θ 3 2 ( 0 , q ) θ 4 2 ( z , q ) = θ 2 2 ( 0 , q ) θ 1 2 ( z , q ) + θ 4 2 ( 0 , q ) θ 3 2 ( z , q ) ,
20.7.3 θ 2 2 ( 0 , q ) θ 4 2 ( z , q ) = θ 3 2 ( 0 , q ) θ 1 2 ( z , q ) + θ 4 2 ( 0 , q ) θ 2 2 ( z , q ) ,
20.7.28 θ 3 ( z | τ + 1 ) = θ 4 ( z | τ ) ,
20.7.29 θ 4 ( z | τ + 1 ) = θ 3 ( z | τ ) .