About the Project

trigonometric form

AdvancedHelp

(0.003 seconds)

21—30 of 116 matching pages

21: 29.15 Fourier Series and Chebyshev Series
Since (29.2.5) implies that cos ϕ = sn ( z , k ) , (29.15.1) can be rewritten in the form
22: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.6 2 π 0 π / 2 sin z sin t cos ( 2 h cos z cos t ) se 2 n + 1 ( t , h 2 ) d t = B 1 2 n + 1 ( h 2 ) 2 se 2 n + 1 ( 1 2 π , h 2 ) se 2 n + 1 ( z , h 2 ) ,
28.10.7 2 π 0 π / 2 sin z sin t sin ( 2 h cos z cos t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 1 2 π , h 2 ) se 2 n + 2 ( z , h 2 ) ,
23: 30.2 Differential Equations
§30.2(ii) Other Forms
The Liouville normal form of equation (30.2.1) is
30.2.2 d 2 g d t 2 + ( λ + 1 4 + γ 2 sin 2 t μ 2 1 4 sin 2 t ) g = 0 ,
z = cos t ,
24: 34.8 Approximations for Large Parameters
For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. …
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ( 4 π ( 2 j 1 + 1 ) ( 2 j 2 + 1 ) ( 2 l 3 + 1 ) sin θ ) 1 2 ( cos ( ( l 3 + 1 2 ) θ 1 4 π ) + o ( 1 ) ) , j 1 , j 2 , j 3 l 3 1 ,
34.8.2 cos θ = j 1 ( j 1 + 1 ) + j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) 2 j 1 ( j 1 + 1 ) j 2 ( j 2 + 1 ) ,
Semiclassical (WKBJ) approximations in terms of trigonometric or exponential functions are given in Varshalovich et al. (1988, §§8.9, 9.9, 10.7). …
25: 18.39 Applications in the Physical Sciences
Orthogonality and normalization of eigenfunctions of this form is respect to the measure r 2 d r sin θ d θ d ϕ . …
26: 36.13 Kelvin’s Ship-Wave Pattern
The integral is of the form of the real part of (36.12.1) with y = ϕ , u = θ , g = 1 , k = ρ , and
36.13.3 f ( θ , ϕ ) = cos ( θ + ϕ ) cos 2 θ .
θ + ( ϕ ) = 1 2 ( arcsin ( 3 sin ϕ ) ϕ ) ,
θ ( ϕ ) = 1 2 ( π ϕ arcsin ( 3 sin ϕ ) ) .
See accompanying text
Figure 36.13.1: Kelvin’s ship wave pattern, computed from the uniform asymptotic approximation (36.13.8), as a function of x = ρ cos ϕ , y = ρ sin ϕ . Magnify
27: 28.6 Expansions for Small q
28.6.26 ce m ( z , q ) = cos m z q 4 ( 1 m + 1 cos ( m + 2 ) z 1 m 1 cos ( m 2 ) z ) + q 2 32 ( 1 ( m + 1 ) ( m + 2 ) cos ( m + 4 ) z + 1 ( m 1 ) ( m 2 ) cos ( m 4 ) z 2 ( m 2 + 1 ) ( m 2 1 ) 2 cos m z ) + .
28: 30.14 Wave Equation in Oblate Spheroidal Coordinates
x = c ( ξ 2 + 1 ) ( 1 η 2 ) cos ϕ ,
y = c ( ξ 2 + 1 ) ( 1 η 2 ) sin ϕ ,
30.14.3 h ξ 2 = c 2 ( ξ 2 + η 2 ) 1 + ξ 2 ,
The wave equation (30.13.7), transformed to oblate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions of the form (30.13.8), where w 1 satisfies the differential equation
30.14.7 d d ξ ( ( 1 + ξ 2 ) d w 1 d ξ ) ( λ + γ 2 ( 1 + ξ 2 ) μ 2 1 + ξ 2 ) w 1 = 0 ,
29: 30.13 Wave Equation in Prolate Spheroidal Coordinates
x = c ( ξ 2 1 ) ( 1 η 2 ) cos ϕ ,
y = c ( ξ 2 1 ) ( 1 η 2 ) sin ϕ ,
30.13.9 d d ξ ( ( 1 ξ 2 ) d w 1 d ξ ) + ( λ + γ 2 ( 1 ξ 2 ) μ 2 1 ξ 2 ) w 1 = 0 ,
30.13.10 d d η ( ( 1 η 2 ) d w 2 d η ) + ( λ + γ 2 ( 1 η 2 ) μ 2 1 η 2 ) w 2 = 0 ,
30.13.12 w 3 ( ϕ ) = a 3 cos ( m ϕ ) + b 3 sin ( m ϕ ) .
30: 33.10 Limiting Forms for Large ρ or Large | η |
§33.10 Limiting Forms for Large ρ or Large | η |
§33.10(i) Large ρ
F ( η , ρ ) = sin ( θ ( η , ρ ) ) + o ( 1 ) ,
§33.10(ii) Large Positive η
§33.10(iii) Large Negative η