About the Project

trigonometric arguments

AdvancedHelp

(0.003 seconds)

21—30 of 68 matching pages

21: 4.1 Special Notation
The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . …
22: 19.2 Definitions
19.2.4 F ( ϕ , k ) = 0 ϕ d θ 1 k 2 sin 2 θ = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ,
19.2.5 E ( ϕ , k ) = 0 ϕ 1 k 2 sin 2 θ d θ = 0 sin ϕ 1 k 2 t 2 1 t 2 d t .
19.2.6 D ( ϕ , k ) = 0 ϕ sin 2 θ d θ 1 k 2 sin 2 θ = 0 sin ϕ t 2 d t 1 t 2 1 k 2 t 2 = ( F ( ϕ , k ) E ( ϕ , k ) ) / k 2 .
19.2.7 Π ( ϕ , α 2 , k ) = 0 ϕ d θ 1 k 2 sin 2 θ ( 1 α 2 sin 2 θ ) = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ( 1 α 2 t 2 ) .
23: 19.23 Integral Representations
19.23.6 4 π R F ( x , y , z ) = 0 2 π 0 π sin θ d θ d ϕ ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 / 2 ,
19.23.6_5 R G ( x , y , z ) = 1 4 π 0 2 π 0 π ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 / 2 sin θ d θ d ϕ ,
19.23.9 R a ( 𝐛 ; 𝐳 ) = 4 Γ ( b 1 + b 2 + b 3 ) Γ ( b 1 ) Γ ( b 2 ) Γ ( b 3 ) 0 π / 2 0 π / 2 ( j = 1 3 z j l j 2 ) a j = 1 3 l j 2 b j 1 sin θ d θ d ϕ , b j > 0 , z j > 0 .
24: 20.10 Integrals
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
For corresponding results for argument derivatives of the theta functions see Erdélyi et al. (1954a, pp. 224–225) or Oberhettinger and Badii (1973, p. 193). …
25: 19.16 Definitions
19.16.12 R a ( b 1 , , b 4 ; c 1 , c k 2 , c , c α 2 ) = 2 ( sin 2 ϕ ) 1 a B ( a , a ) 0 ϕ ( sin θ ) 2 a 1 ( sin 2 ϕ sin 2 θ ) a 1 ( cos θ ) 1 2 b 1 ( 1 k 2 sin 2 θ ) b 2 ( 1 α 2 sin 2 θ ) b 4 d θ ,
26: 19.5 Maclaurin and Related Expansions
19.5.4_1 F ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_3 Π ( ϕ , α 2 , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 ( m + 1 2 ; 1 2 , 1 ; m + 3 2 ; sin 2 ϕ , α 2 sin 2 ϕ ) k 2 m ,
27: Errata
  • Equation (23.12.2)
    23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) )

    Originally, the factor of 2 was missing from the denominator of the argument of the cot function.

    Reported by Blagoje Oblak on 2019-05-27

  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Equation (14.19.2)
    14.19.2 P ν 1 2 μ ( cosh ξ ) = Γ ( 1 2 μ ) π 1 / 2 ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ 𝐅 ( 1 2 μ , 1 2 + ν μ ; 1 2 μ ; 1 e 2 ξ ) , μ 1 2 , 3 2 , 5 2 ,

    Originally the argument to 𝐅 in this equation was incorrect ( e 2 ξ , rather than 1 e 2 ξ ), and the condition on μ was too weak ( μ 1 2 , rather than μ 1 2 , 3 2 , 5 2 , ). Also, the factor multiplying 𝐅 was rewritten to clarify the poles; originally it was Γ ( 1 2 μ ) 2 2 μ Γ ( 1 μ ) ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ .

    Reported 2010-11-02 by Alvaro Valenzuela.

  • 28: 19.25 Relations to Other Functions
    29: 10.67 Asymptotic Expansions for Large Argument
    §10.67 Asymptotic Expansions for Large Argument
    §10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
    10.67.3 ber ν x e x / 2 ( 2 π x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + 3 k 4 1 8 ) π ) 1 π ( sin ( 2 ν π ) ker ν x + cos ( 2 ν π ) kei ν x ) ,
    §10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
    30: 4.23 Inverse Trigonometric Functions
    §4.23 Inverse Trigonometric Functions
    §4.23(i) General Definitions
    Graphs of the principal values for real arguments are given in §4.15. This section also includes conformal mappings, and surface plots for complex arguments. …
    §4.23(iv) Logarithmic Forms