About the Project

triconfluent Heun equation

AdvancedHelp

(0.001 seconds)

31—40 of 453 matching pages

31: Bibliography F
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • M. V. Fedoryuk (1991) Asymptotics of the spectrum of the Heun equation and of Heun functions. Izv. Akad. Nauk SSSR Ser. Mat. 55 (3), pp. 631–646 (Russian).
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • T. Fort (1948) Finite Differences and Difference Equations in the Real Domain. Clarendon Press, Oxford.
  • 32: 28.18 Integrals and Integral Equations
    §28.18 Integrals and Integral Equations
    33: Errata
  • Additions

    Equation (16.16.5_5).

  • Equations (31.3.10), (31.3.11)
    31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z )
    31.3.11 z β H ( 1 a , q a β ( α ϵ ) β a ( α δ ) ; β , β γ + 1 , β α + 1 , δ ; 1 z )

    In both equations, the second entry in the H has been corrected with an extra minus sign.

  • Equations (31.16.2) and (31.16.3)
    31.16.2
    x y = a sin 2 θ cos 2 ϕ ,
    ( x 1 ) ( y 1 ) = ( 1 a ) sin 2 θ sin 2 ϕ ,
    ( x a ) ( y a ) = a ( a 1 ) cos 2 θ
    31.16.3 A 0 = n ! ( γ + δ ) n 𝐻𝑝 n , m ( 1 ) , Q 0 A 0 + R 0 A 1 = 0

    Originally x , y were incorrectly defined by the set of equations (31.16.2), given previously as “ x = sin 2 θ cos 2 ϕ ,   y = sin 2 θ sin 2 ϕ ”. In fact, x , y are implicitly defined by the corrected set of equations. In (31.16.3), the initial data A 0 , previously missing, has now been included.

  • Equation (14.15.23)

    Four of the terms were rewritten for improved clarity.

  • Equation (10.13.4)

    has been generalized to cover an additional case.

  • 34: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 35: Bibliography T
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 36: Bibliography D
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • B. Deconinck and H. Segur (2000) Pole dynamics for elliptic solutions of the Korteweg-de Vries equation. Math. Phys. Anal. Geom. 3 (1), pp. 49–74.
  • 37: Vadim B. Kuznetsov
    38: Bibliography B
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • P. A. Becker (1997) Normalization integrals of orthogonal Heun functions. J. Math. Phys. 38 (7), pp. 3692–3699.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • A. A. Bogush and V. S. Otchik (1997) Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation. J. Phys. A 30 (2), pp. 559–571.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • 39: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • N. J. Hitchin (1995) Poncelet Polygons and the Painlevé Equations. In Geometry and Analysis (Bombay, 1992), Ramanan (Ed.), pp. 151–185.
  • H. Hochstadt (1963) Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
  • H. Hochstadt (1964) Differential Equations: A Modern Approach. Holt, Rinehart and Winston, New York.
  • 40: Bibliography R
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.