About the Project

transformation of variable

AdvancedHelp

(0.005 seconds)

31—40 of 114 matching pages

31: 29.10 Lamé Functions with Imaginary Periods
transform (29.2.1) into
29.10.3 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) ) w = 0 .
32: 30.14 Wave Equation in Oblate Spheroidal Coordinates
§30.14(iv) Separation of Variables
The wave equation (30.13.7), transformed to oblate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions of the form (30.13.8), where w 1 satisfies the differential equation …Equation (30.14.7) can be transformed to equation (30.2.1) by the substitution z = ± i ξ . …
33: 15.11 Riemann’s Differential Equation
The importance of (15.10.1) is that any homogeneous linear differential equation of the second order with at most three distinct singularities, all regular, in the extended plane can be transformed into (15.10.1). …
15.11.3 w = P { α β γ a 1 b 1 c 1 z a 2 b 2 c 2 } .
§15.11(ii) Transformation Formulas
15.11.5 t = ( κ z + λ ) / ( μ z + ν ) ,
34: Errata
  • Subsection 1.16(vii)

    Several changes have been made to

    1. (i)

      make consistent use of the Fourier transform notations ( f ) , ( ϕ ) and ( u ) where f is a function of one real variable, ϕ is a test function of n variables associated with tempered distributions, and u is a tempered distribution (see (1.14.1), (1.16.29) and (1.16.35));

    2. (ii)

      introduce the partial differential operator 𝐃 in (1.16.30);

    3. (iii)

      clarify the definition (1.16.32) of the partial differential operator P ( 𝐃 ) ; and

    4. (iv)

      clarify the use of P ( 𝐃 ) and P ( 𝐱 ) in (1.16.33), (1.16.34), (1.16.36) and (1.16.37).

  • 35: 21.9 Integrable Equations
    Here x and y are spatial variables, t is time, and u ( x , y , t ) is the elevation of the surface wave. All quantities are made dimensionless by a suitable scaling transformation. …
    36: 16.5 Integral Representations and Integrals
    16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
    37: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • I. Thompson (2012) A note on the real zeros of the incomplete gamma function. Integral Transforms Spec. Funct. 23 (6), pp. 445–453.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 38: 8.19 Generalized Exponential Integral
    8.19.2 E p ( z ) = z p 1 z e t t p d t .
    8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
    39: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
    10.46.1 ϕ ( ρ , β ; z ) = k = 0 z k k ! Γ ( ρ k + β ) , ρ > 1 .
    10.46.2 I ν ( z ) = ( 1 2 z ) ν ϕ ( 1 , ν + 1 ; 1 4 z 2 ) .
    The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function:
    10.46.3 E a , b ( z ) = k = 0 z k Γ ( a k + b ) , a > 0 .
    40: 7.7 Integral Representations
    7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
    7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
    7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .