About the Project

three j symbols

AdvancedHelp

(0.004 seconds)

1—10 of 18 matching pages

1: 34.10 Zeros
β–ΊIn a 3 ⁒ j symbol, if the three angular momenta j 1 , j 2 , j 3 do not satisfy the triangle conditions (34.2.1), or if the projective quantum numbers do not satisfy (34.2.3), then the 3 ⁒ j symbol is zero. …
2: 16.24 Physical Applications
β–ΊThe coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 ⁒ j symbols. …
3: 34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
4: 34.3 Basic Properties: 3 ⁒ j Symbol
β–ΊIn the following three equations it is assumed that the triangle conditions are satisfied by each 3 ⁒ j symbol. …
5: 16.4 Argument Unity
β–ΊSee Raynal (1979) for a statement in terms of 3 ⁒ j symbols (Chapter 34). … β–ΊThese series contain 6 ⁒ j symbols as special cases when the parameters are integers; compare §34.4. … β–ΊOne example of such a three-term relation is the recurrence relation (18.26.16) for Racah polynomials. … β–ΊRelations between three solutions of three-term recurrence relations are given by Masson (1991). …
6: Bibliography C
β–Ί
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • β–Ί
  • B. C. Carlson (1999) Toward symbolic integration of elliptic integrals. J. Symbolic Comput. 28 (6), pp. 739–753.
  • β–Ί
  • B. C. Carlson (2002) Three improvements in reduction and computation of elliptic integrals. J. Res. Nat. Inst. Standards Tech. 107 (5), pp. 413–418.
  • β–Ί
  • J. N. L. Connor and D. Farrelly (1981) Molecular collisions and cusp catastrophes: Three methods for the calculation of Pearcey’s integral and its derivatives. Chem. Phys. Lett. 81 (2), pp. 306–310.
  • β–Ί
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.
  • 7: Bibliography G
    β–Ί
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • β–Ί
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • β–Ί
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • β–Ί
  • A. Gervois and H. Navelet (1986a) Some integrals involving three modified Bessel functions. I. J. Math. Phys. 27 (3), pp. 682–687.
  • β–Ί
  • A. Gervois and H. Navelet (1986b) Some integrals involving three modified Bessel functions. II. J. Math. Phys. 27 (3), pp. 688–695.
  • 8: 19.15 Advantages of Symmetry
    β–ΊSymmetry in x , y , z of R F ⁑ ( x , y , z ) , R G ⁑ ( x , y , z ) , and R J ⁑ ( x , y , z , p ) replaces the five transformations (19.7.2), (19.7.4)–(19.7.7) of Legendre’s integrals; compare (19.25.17). …(19.21.12) unifies the three transformations in §19.7(iii) that change the parameter of Legendre’s third integral. … β–ΊThese reduction theorems, unknown in the Legendre theory, allow symbolic integration without imposing conditions on the parameters and the limits of integration (see §19.29(ii)). …
    9: 18.37 Classical OP’s in Two or More Variables
    β–ΊThe following three conditions, taken together, determine R m , n ( Ξ± ) ⁑ ( z ) uniquely: β–Ί
    18.37.3 R m , n ( Ξ± ) ⁑ ( z ) = j = 0 min ⁑ ( m , n ) c j ⁒ z m j ⁒ z ¯ n j ,
    β–Ίwhere c j are real or complex constants, with c 0 0 ; β–Ί
    18.37.4 ∬ x 2 + y 2 < 1 R m , n ( α ) ⁑ ( x + i ⁒ y ) ⁒ ( x i ⁒ y ) m j ⁒ ( x + i ⁒ y ) n j ⁒ ( 1 x 2 y 2 ) α ⁒ d x ⁒ d y = 0 , j = 1 , 2 , , min ⁑ ( m , n ) ;
    β–Ί
    18.37.6 R m , n ( Ξ± ) ⁑ ( z ) = j = 0 min ⁑ ( m , n ) ( 1 ) j ⁒ ( Ξ± + 1 ) m + n j ⁒ ( m ) j ⁒ ( n ) j ( Ξ± + 1 ) m ⁒ ( Ξ± + 1 ) n ⁒ j ! ⁒ z m j ⁒ z ¯ n j .
    10: Bibliography V
    β–Ί
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • β–Ί
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • β–Ί
  • A. van Wijngaarden (1953) On the coefficients of the modular invariant J ⁒ ( Ο„ ) . Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 56, pp. 389–400.
  • β–Ί
  • R. VidΕ«nas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • β–Ί
  • I. M. Vinogradov (1937) Representation of an odd number as a sum of three primes (Russian). Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).