About the Project

symmetric elliptic integrals

AdvancedHelp

(0.012 seconds)

41—50 of 51 matching pages

41: 19.3 Graphics
§19.3 Graphics
See Figures 19.3.119.3.6 for complete and incomplete Legendre’s elliptic integrals.
See accompanying text
Figure 19.3.1: K ( k ) and E ( k ) as functions of k 2 for 2 k 2 1 . Graphs of K ( k ) and E ( k ) are the mirror images in the vertical line k 2 = 1 2 . Magnify
In Figures 19.3.7 and 19.3.8 for complete Legendre’s elliptic integrals with complex arguments, height corresponds to the absolute value of the function and color to the phase. …
See accompanying text
Figure 19.3.12: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
42: 36.5 Stokes Sets
§36.5(ii) Cuspoids
§36.5(iii) Umbilics
Elliptic Umbilic Stokes Set (Codimension three)
One of the sheets is symmetrical under reflection in the plane y = 0 , and is given by …
§36.5(iv) Visualizations
43: 15.17 Mathematical Applications
§15.17(ii) Conformal Mappings
Hypergeometric functions, especially complete elliptic integrals, also play an important role in quasiconformal mapping. … First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). …
44: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • A. Terras (1988) Harmonic Analysis on Symmetric Spaces and Applications. II. Springer-Verlag, Berlin.
  • H. C. Thacher Jr. (1963) Algorithm 165: Complete elliptic integrals. Comm. ACM 6 (4), pp. 163–164.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • B. A. Troesch and H. R. Troesch (1973) Eigenfrequencies of an elliptic membrane. Math. Comp. 27 (124), pp. 755–765.
  • 45: 32.2 Differential Equations
    The fifty equations can be reduced to linear equations, solved in terms of elliptic functions (Chapters 22 and 23), or reduced to one of P I P VI . …
    §32.2(iv) Elliptic Form
    32.2.13 z ( 1 z ) 𝐼 ( w d t t ( t 1 ) ( t z ) ) = w ( w 1 ) ( w z ) ( α + β z w 2 + γ ( z 1 ) ( w 1 ) 2 + ( δ 1 2 ) z ( z 1 ) ( w z ) 2 ) ,
    §32.2(v) Symmetric Forms
    46: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • A. E. Ingham (1933) An integral which occurs in statistics. Proceedings of the Cambridge Philosophical Society 29, pp. 271–276.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • 47: Bibliography S
  • B. E. Sagan (2001) The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. 2nd edition, Graduate Texts in Mathematics, Vol. 203, Springer-Verlag, New York.
  • R. G. Selfridge and J. E. Maxfield (1958) A Table of the Incomplete Elliptic Integral of the Third Kind. Dover Publications Inc., New York.
  • G. Shanmugam (1978) Parabolic Cylinder Functions and their Application in Symmetric Two-centre Shell Model. In Proceedings of the Conference on Mathematical Analysis and its Applications (Inst. Engrs., Mysore, 1977), Matscience Rep., Vol. 91, Aarhus, pp. P81–P89.
  • R. P. Stanley (1989) Some combinatorial properties of Jack symmetric functions. Adv. Math. 77 (1), pp. 76–115.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 48: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • G. Veneziano (1968) Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A 57 (1), pp. 190–197.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • 49: Bibliography R
  • H. A. Ragheb, L. Shafai, and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • 50: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • B. Deconinck and H. Segur (2000) Pole dynamics for elliptic solutions of the Korteweg-de Vries equation. Math. Phys. Anal. Geom. 3 (1), pp. 49–74.
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • H. Ding, K. I. Gross, and D. St. P. Richards (1996) Ramanujan’s master theorem for symmetric cones. Pacific J. Math. 175 (2), pp. 447–490.
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.