About the Project

sums

AdvancedHelp

(0.001 seconds)

31—40 of 373 matching pages

31: 26.10 Integer Partitions: Other Restrictions
where the last right-hand side is the sum over m 0 of the generating functions for partitions into distinct parts with largest part equal to m . … where the inner sum is the sum of all positive odd divisors of t . … where the sum is over nonnegative integer values of k for which n 1 2 ( 3 k 2 ± k ) 0 . … where the sum is over nonnegative integer values of k for which n ( 3 k 2 ± k ) 0 . … where the inner sum is the sum of all positive divisors of t that are in S . …
32: 14.28 Sums
§14.28 Sums
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
§14.28(iii) Other Sums
33: 27.14 Unrestricted Partitions
A fundamental problem studies the number of ways n can be written as a sum of positive integers n , that is, the number of solutions of … and s ( h , k ) is a Dedekind sum given by
27.14.11 s ( h , k ) = r = 1 k 1 r k ( h r k h r k 1 2 ) .
Dedekind sums occur in the transformation theory of the Dedekind modular function η ( τ ) , defined by …where ε = exp ( π i ( ( ( a + d ) / ( 12 c ) ) s ( d , c ) ) ) and s ( d , c ) is given by (27.14.11). …
34: 31.14 General Fuchsian Equation
31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
α + β + 1 = j = 1 N γ j ,
α β = j = 1 N a j q j .
31.14.4 d 2 W d z 2 = j = 1 N ( γ ~ j ( z a j ) 2 + q ~ j z a j ) W , j = 1 N q ~ j = 0 ,
q ~ j = 1 2 k = 1 k j N γ j γ k a j a k q j ,
35: 6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.4 Ein ( z ) = n = 1 ( 1 ) n 1 z n n ! n ,
6.6.5 Si ( z ) = n = 0 ( 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) ,
36: 10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
37: 26.18 Counting Techniques
26.18.1 | S ( A 1 A 2 A n ) | = | S | + t = 1 n ( 1 ) t 1 j 1 < j 2 < < j t n | A j 1 A j 2 A j t | .
26.18.2 N + t = 1 n ( 1 ) t 1 j 1 < j 2 < < j t n N p j 1 p j 2 p j t .
26.18.3 n ! + t = 1 n ( 1 ) t r t ( B ) ( n t ) ! .
26.18.4 k n + t = 1 n ( 1 ) t ( k t ) ( k t ) n .
38: 20.6 Power Series
20.6.6 δ 2 j ( τ ) = n = m = | m | + | n | 0 ( m + n τ ) 2 j ,
20.6.7 α 2 j ( τ ) = n = m = ( m 1 2 + n τ ) 2 j ,
20.6.8 β 2 j ( τ ) = n = m = ( m 1 2 + ( n 1 2 ) τ ) 2 j ,
20.6.9 γ 2 j ( τ ) = n = m = ( m + ( n 1 2 ) τ ) 2 j ,
For further information on δ 2 j see §23.9: since the double sums in (20.6.6) and (23.9.1) are the same, we have δ 2 n = c n / ( 2 n 1 ) when n 2 .
39: 2.10 Sums and Sequences
§2.10 Sums and Sequences
§2.10(i) Euler–Maclaurin Formula
§2.10(iv) Taylor and Laurent Coefficients: Darboux’s Method
See also Flajolet and Odlyzko (1990).
40: 14.18 Sums
§14.18 Sums
§14.18(iii) Other Sums
14.18.6 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) P k ( y ) = ( n + 1 ) ( P n + 1 ( x ) P n ( y ) P n ( x ) P n + 1 ( y ) ) ,
For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2000, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …