About the Project

sums

AdvancedHelp

(0.001 seconds)

21—30 of 373 matching pages

21: 25.8 Sums
§25.8 Sums
25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
25.8.3 k = 0 ( s ) k ζ ( s + k ) k ! 2 s + k = ( 1 2 s ) ζ ( s ) , s 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
For other sums see Prudnikov et al. (1986b, pp. 648–649), Hansen (1975, pp. 355–357), Ogreid and Osland (1998), and Srivastava and Choi (2001, Chapter 3).
22: 24.14 Sums
§24.14 Sums
24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
In the following two identities, valid for n 2 , the sums are taken over all nonnegative integers j , k , with j + k + = n . … In the next identity, valid for n 4 , the sum is taken over all positive integers j , k , , m with j + k + + m = n . … For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
23: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
Euler’s Second Sum
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
Euler’s First Sum
Cauchy’s Sum
24: 27.4 Euler Products and Dirichlet Series
27.4.1 n = 1 f ( n ) = p ( 1 + r = 1 f ( p r ) ) ,
27.4.2 n = 1 f ( n ) = p ( 1 f ( p ) ) 1 .
27.4.3 ζ ( s ) = n = 1 n s = p ( 1 p s ) 1 , s > 1 .
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
27.4.11 n = 1 σ α ( n ) n s = ζ ( s ) ζ ( s α ) , s > max ( 1 , 1 + α ) ,
25: 8.15 Sums
§8.15 Sums
8.15.1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 λ ) k k ! .
8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
26: 25.17 Physical Applications
Quantum field theory often encounters formally divergent sums that need to be evaluated by a process of regularization: for example, the energy of the electromagnetic vacuum in a confined space (Casimir–Polder effect). It has been found possible to perform such regularizations by equating the divergent sums to zeta functions and associated functions (Elizalde (1995)).
27: 12.13 Sums
§12.13 Sums
12.13.1 U ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( y ) m m ! U ( a m , x ) ,
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.4 V ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 y m m ! V ( a + m , x ) .
28: 34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
29: 24.5 Recurrence Relations
24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
a n = k = 0 n ( n k ) b n k k + 1 ,
b n = k = 0 n ( n k ) B k a n k .
a n = k = 0 n / 2 ( n 2 k ) b n 2 k ,
b n = k = 0 n / 2 ( n 2 k ) E 2 k a n 2 k .
30: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia