About the Project

spherical (or spherical polar)

AdvancedHelp

(0.000 seconds)

21—30 of 84 matching pages

21: 8.7 Series Expansions
§8.7 Series Expansions
For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
22: 10.76 Approximations
Spherical Bessel Functions
23: 4.42 Solution of Triangles
§4.42 Solution of Triangles
§4.42(iii) Spherical Triangles
See accompanying text
Figure 4.42.3: Spherical triangle. Magnify
24: 10.75 Tables
§10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
  • The main tables in Abramowitz and Stegun (1964, Chapter 10) give 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 8 , x = 0 ( .1 ) 10 , 5–8S; 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 5 , 4–9D; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S. (For the notation see §10.1 and §10.47(ii).)

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • §10.75(x) Zeros and Associated Values of Derivatives of Spherical Bessel Functions
  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 25: 10.74 Methods of Computation
    Similar observations apply to the computation of modified Bessel functions, spherical Bessel functions, and Kelvin functions. … Similar considerations apply to the spherical Bessel functions and Kelvin functions. …
    Spherical Bessel Transform
    The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
    26: 34.3 Basic Properties: 3 j Symbol
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30.
    34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
    34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
    34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
    27: 15.17 Mathematical Applications
    First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. …
    28: 18.41 Tables
    For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
    29: 33.9 Expansions in Series of Bessel Functions
    §33.9(i) Spherical Bessel Functions
    where the function 𝗃 is as in §10.47(ii), a 1 = 0 , a 0 = ( 2 + 1 ) !! C ( η ) , and …
    30: 1.17 Integral and Series Representations of the Dirac Delta
    Bessel Functions and Spherical Bessel Functions (§§10.2(ii), 10.47(ii))
    1.17.14 δ ( x a ) = 2 x a π 0 t 2 𝗃 ( x t ) 𝗃 ( a t ) d t , x > 0 , a > 0 .
    1.17.22 δ ( x a ) = k = 0 ( k + 1 2 ) P k ( x ) P k ( a ) .
    Spherical Harmonics (§14.30)
    1.17.25 δ ( cos θ 1 cos θ 2 ) δ ( ϕ 1 ϕ 2 ) = = 0 m = Y , m ( θ 1 , ϕ 1 ) Y , m ( θ 2 , ϕ 2 ) ¯ .