About the Project

sine integrals

AdvancedHelp

(0.010 seconds)

21—30 of 174 matching pages

21: 6.12 Asymptotic Expansions
For the function χ see §9.7(i). … The asymptotic expansions of Si ( z ) and Ci ( z ) are given by (6.2.19), (6.2.20), together with
6.12.3 f ( z ) 1 z ( 1 2 ! z 2 + 4 ! z 4 6 ! z 6 + ) ,
6.12.4 g ( z ) 1 z 2 ( 1 3 ! z 2 + 5 ! z 4 7 ! z 6 + ) ,
6.12.5 f ( z ) = 1 z m = 0 n 1 ( 1 ) m ( 2 m ) ! z 2 m + R n ( f ) ( z ) ,
22: 6.17 Physical Applications
§6.17 Physical Applications
Lebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.
23: 7.1 Special Notation
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . …
24: 7.3 Graphics
See accompanying text
Figure 7.3.3: Fresnel integrals C ( x ) and S ( x ) , 0 x 4 . Magnify
25: 7.20 Mathematical Applications
Let the set { x ( t ) , y ( t ) , t } be defined by x ( t ) = C ( t ) , y ( t ) = S ( t ) , t 0 . …
See accompanying text
Figure 7.20.1: Cornu’s spiral, formed from Fresnel integrals, is defined parametrically by x = C ( t ) , y = S ( t ) , t [ 0 , ) . Magnify
26: 6.16 Mathematical Applications
§6.16(i) The Gibbs Phenomenon
6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
6.16.3 R n ( x ) = 1 2 0 x ( 1 sin t 1 t ) sin ( 2 n t ) d t .
Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … The first maximum of 1 2 Si ( x ) for positive x occurs at x = π and equals ( 1.1789 ) × 1 4 π ; compare Figure 6.3.2. …
27: 6.6 Power Series
§6.6 Power Series
6.6.5 Si ( z ) = n = 0 ( 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) ,
28: 10.15 Derivatives with Respect to Order
For the notations Ci and Si see §6.2(ii). …
10.15.9 Y ν ( x ) ν | ν = 1 2 = 2 π x ( Ci ( 2 x ) sin x ( Si ( 2 x ) π ) cos x ) .
29: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 30: 7.6 Series Expansions
    7.6.5 C ( z ) = cos ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n 1 3 ( 4 n + 1 ) z 4 n + 1 + sin ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n + 1 1 3 ( 4 n + 3 ) z 4 n + 3 .
    7.6.6 S ( z ) = n = 0 ( 1 ) n ( 1 2 π ) 2 n + 1 ( 2 n + 1 ) ! ( 4 n + 3 ) z 4 n + 3 ,
    7.6.7 S ( z ) = cos ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n + 1 1 3 ( 4 n + 3 ) z 4 n + 3 + sin ( 1 2 π z 2 ) n = 0 ( 1 ) n π 2 n 1 3 ( 4 n + 1 ) z 4 n + 1 .
    7.6.11 S ( z ) = z n = 0 𝗃 2 n + 1 ( 1 2 π z 2 ) .