About the Project

sine and cosine integrals

AdvancedHelp

(0.006 seconds)

31—40 of 154 matching pages

31: 7.14 Integrals
§7.14 Integrals
Fourier Transform
Laplace Transforms
§7.14(ii) Fresnel Integrals
Laplace Transforms
32: 7.13 Zeros
At z = 0 , C ( z ) has a simple zero and S ( z ) has a triple zero. … Tables 7.13.3 and 7.13.4 give 10D values of the first five x n and y n of C ( z ) and S ( z ) , respectively. … For an asymptotic expansion of the zeros of 0 z exp ( 1 2 π i t 2 ) d t ( = ( 0 ) ( z ) = C ( z ) + i S ( z ) ) see Tuẑilin (1971). …
33: Software Index
34: 7.11 Relations to Other Functions
7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .
35: 6.10 Other Series Expansions
§6.10(ii) Expansions in Series of Spherical Bessel Functions
36: 7.24 Approximations
  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 37: 7.22 Methods of Computation
    The methods available for computing the main functions in this chapter are analogous to those described in §§6.18(i)6.18(iv) for the exponential integral and sine and cosine integrals, and similar comments apply. …
    38: Nico M. Temme
    39: 11.10 Anger–Weber Functions
    11.10.1 𝐉 ν ( z ) = 1 π 0 π cos ( ν θ z sin θ ) d θ ,
    11.10.3 1 π 0 2 π cos ( ν θ z sin θ ) d θ = ( 1 + cos ( 2 π ν ) ) 𝐉 ν ( z ) + sin ( 2 π ν ) 𝐄 ν ( z ) .
    A ± ( χ ) = C ( χ ) ± S ( χ ) ,
    For the Fresnel integrals C and S see §7.2(iii). …
    40: 4.26 Integrals
    4.26.1 sin x d x = cos x ,
    4.26.2 cos x d x = sin x .
    4.26.8 e a x cos ( b x ) d x = e a x a 2 + b 2 ( a cos ( b x ) + b sin ( b x ) ) .
    4.26.11 0 π sin 2 ( n t ) d t = 0 π cos 2 ( n t ) d t = 1 2 π , n 0 .
    4.26.13 0 sin ( t 2 ) d t = 0 cos ( t 2 ) d t = 1 2 π 2 .