About the Project

sin %253F %253C%253D %253F

AdvancedHelp

(0.003 seconds)

21—30 of 464 matching pages

21: 7.2 Definitions
erf z , erfc z , and w ( z ) are entire functions of z , as is F ( z ) in the next subsection. …
7.2.8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t ,
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
7.2.10 f ( z ) = ( 1 2 S ( z ) ) cos ( 1 2 π z 2 ) ( 1 2 C ( z ) ) sin ( 1 2 π z 2 ) ,
7.2.11 g ( z ) = ( 1 2 C ( z ) ) cos ( 1 2 π z 2 ) + ( 1 2 S ( z ) ) sin ( 1 2 π z 2 ) .
22: 19.14 Reduction of General Elliptic Integrals
19.14.5 sin 2 ϕ = γ α U 2 + γ ,
19.14.7 sin 2 ϕ = ( γ α ) x 2 a 1 a 2 + γ x 2 .
19.14.8 sin 2 ϕ = γ α b 1 b 2 y 2 + γ .
19.14.9 sin 2 ϕ = ( γ α ) ( x 2 y 2 ) γ ( x 2 y 2 ) a 1 ( a 2 + b 2 x 2 ) .
19.14.10 sin 2 ϕ = ( γ α ) ( y 2 x 2 ) γ ( y 2 x 2 ) a 1 ( a 2 + b 2 y 2 ) .
23: 19.33 Triaxial Ellipsoids
19.33.5 V ( λ ) = Q R F ( a 2 + λ , b 2 + λ , c 2 + λ ) ,
and the electric capacity C = Q / V ( 0 ) is given by
19.33.6 1 / C = R F ( a 2 , b 2 , c 2 ) .
19.33.11 U = 1 2 ( α β γ ) 2 R F ( α 2 , β 2 , γ 2 ) 0 ( g ( r ) ) 2 d r ,
24: 19.28 Integrals of Elliptic Integrals
19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.5 z R D ( x , y , t ) d t = 6 R F ( x , y , z ) ,
19.28.9 0 π / 2 R F ( sin 2 θ cos 2 ( x + y ) , sin 2 θ cos 2 ( x y ) , 1 ) d θ = R F ( 0 , cos 2 x , 1 ) R F ( 0 , cos 2 y , 1 ) ,
19.28.10 0 R F ( ( a c + b d ) 2 , ( a d + b c ) 2 , 4 a b c d cosh 2 z ) d z = 1 2 R F ( 0 , a 2 , b 2 ) R F ( 0 , c 2 , d 2 ) , a , b , c , d > 0 .
25: 14.3 Definitions and Hypergeometric Representations
14.3.2 𝖰 ν μ ( x ) = π 2 sin ( μ π ) ( cos ( μ π ) ( 1 + x 1 x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) ( 1 x 1 + x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 + μ ; 1 2 1 2 x ) ) .
14.3.11 𝖯 ν μ ( x ) = cos ( 1 2 ( ν + μ ) π ) w 1 ( ν , μ , x ) + sin ( 1 2 ( ν + μ ) π ) w 2 ( ν , μ , x ) ,
14.3.20 2 sin ( μ π ) π 𝑸 ν μ ( x ) = ( x + 1 ) μ / 2 Γ ( ν + μ + 1 ) ( x 1 ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) ( x 1 ) μ / 2 Γ ( ν μ + 1 ) ( x + 1 ) μ / 2 𝐅 ( ν + 1 , ν ; μ + 1 ; 1 2 1 2 x ) .
In terms of the Gegenbauer function C α ( β ) ( x ) and the Jacobi function ϕ λ ( α , β ) ( t ) (§§15.9(iii), 15.9(ii)): …
26: 19.3 Graphics
See accompanying text
Figure 19.3.3: F ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . If sin 2 ϕ = 1 ( k 2 ), then the function reduces to K ( k ) , becoming infinite when k 2 = 1 . … Magnify 3D Help
See accompanying text
Figure 19.3.4: E ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . … Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . … Magnify 3D Help
27: 7.5 Interrelations
7.5.1 F ( z ) = 1 2 i π ( e z 2 w ( z ) ) = 1 2 i π e z 2 erf ( i z ) .
7.5.2 C ( z ) + i S ( z ) = 1 2 ( 1 + i ) ( z ) .
7.5.3 C ( z ) = 1 2 + f ( z ) sin ( 1 2 π z 2 ) g ( z ) cos ( 1 2 π z 2 ) ,
7.5.4 S ( z ) = 1 2 f ( z ) cos ( 1 2 π z 2 ) g ( z ) sin ( 1 2 π z 2 ) .
7.5.13 G ( x ) = π F ( x ) 1 2 e x 2 Ei ( x 2 ) , x > 0 .
28: 15.8 Transformations of Variable
15.8.2 sin ( π ( b a ) ) π 𝐅 ( a , b c ; z ) = ( z ) a Γ ( b ) Γ ( c a ) 𝐅 ( a , a c + 1 a b + 1 ; 1 z ) ( z ) b Γ ( a ) Γ ( c b ) 𝐅 ( b , b c + 1 b a + 1 ; 1 z ) , | ph ( z ) | < π .
15.8.3 sin ( π ( b a ) ) π 𝐅 ( a , b c ; z ) = ( 1 z ) a Γ ( b ) Γ ( c a ) 𝐅 ( a , c b a b + 1 ; 1 1 z ) ( 1 z ) b Γ ( a ) Γ ( c b ) 𝐅 ( b , c a b a + 1 ; 1 1 z ) , | ph ( z ) | < π .
15.8.4 sin ( π ( c a b ) ) π 𝐅 ( a , b c ; z ) = 1 Γ ( c a ) Γ ( c b ) 𝐅 ( a , b a + b c + 1 ; 1 z ) ( 1 z ) c a b Γ ( a ) Γ ( b ) 𝐅 ( c a , c b c a b + 1 ; 1 z ) , | ph z | < π , | ph ( 1 z ) | < π .
15.8.5 sin ( π ( c a b ) ) π 𝐅 ( a , b c ; z ) = z a Γ ( c a ) Γ ( c b ) 𝐅 ( a , a c + 1 a + b c + 1 ; 1 1 z ) ( 1 z ) c a b z a c Γ ( a ) Γ ( b ) 𝐅 ( c a , 1 a c a b + 1 ; 1 1 z ) , | ph z | < π , | ph ( 1 z ) | < π .
Alternatively, if b a is a negative integer, then we interchange a and b in 𝐅 ( a , b ; c ; z ) . …
29: 31.2 Differential Equations
31.2.5 z = sin 2 θ ,
31.2.6 d 2 w d θ 2 + ( ( 2 γ 1 ) cot θ ( 2 δ 1 ) tan θ ϵ sin ( 2 θ ) a sin 2 θ ) d w d θ + 4 α β sin 2 θ q a sin 2 θ w = 0 .
F -Homotopic Transformations
There are 4 ! = 24 homographies z ~ ( z ) = ( A z + B ) / ( C z + D ) that take 0 , 1 , a , to some permutation of 0 , 1 , a , , where a may differ from a . … There are 8 24 = 192 automorphisms of equation (31.2.1) by compositions of F -homotopic and homographic transformations. …
30: 19.8 Quadratic Transformations
E ( ϕ , k ) = 1 2 ( 1 + k ) E ( ϕ 1 , k 1 ) k F ( ϕ , k ) + 1 2 ( 1 k ) sin ϕ 1 .
E ( ϕ , k ) = ( 1 + k ) E ( ϕ 2 , k 2 ) + ( 1 k ) F ( ϕ 2 , k 2 ) k sin ϕ .
We consider only the descending Gauss transformation because its (ascending) inverse moves F ( ϕ , k ) closer to the singularity at k = sin ϕ = 1 . …
sin ψ 1 = ( 1 + k ) sin ϕ 1 + Δ ,
Δ = 1 k 2 sin 2 ϕ .