About the Project

signal analysis


(0.002 seconds)

8 matching pages

1: 30.15 Signal Analysis
§30.15 Signal Analysis
2: Mourad E. H. Ismail
Books for which he has served as editor or coeditor include, Mathematical Analysis, Wavelets, and Signal Processing (with M. …
3: Bibliography P
  • A. Papoulis (1977) Signal Analysis. McGraw-Hill, New York.
  • 4: Bibliography R
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • 5: Bibliography I
  • M. E. H. Ismail, M. Z. Nashed, A. I. Zayed, and A. F. Ghaleb (Eds.) (1995) Mathematical Analysis, Wavelets, and Signal Processing. Contemporary Mathematics, Vol. 190, American Mathematical Society, Providence, RI.
  • 6: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • P. Henrici (1977) Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-Interscience [John Wiley & Sons], New York.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • 7: Bibliography C
  • B. C. Carlson (1990) Landen Transformations of Integrals. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 75–94.
  • F. Chapeau-Blondeau and A. Monir (2002) Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50 (9), pp. 2160–2165.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 1163–1170.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • 8: Bibliography F
  • J. Faraut and A. Korányi (1994) Analysis on Symmetric Cones. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford-New York.
  • P. Flajolet and A. Odlyzko (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (2), pp. 216–240.
  • K. W. Ford and J. A. Wheeler (1959b) Application of semiclassical scattering analysis. Ann. Physics 7 (3), pp. 287–322.
  • L. Fox and I. B. Parker (1968) Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London.
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.