About the Project

shift of variable

AdvancedHelp

(0.003 seconds)

21—30 of 135 matching pages

21: 18.5 Explicit Representations
18.5.7 P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n ! ( n ) ! ( x 1 2 ) = ( α + 1 ) n n ! F 1 2 ( n , n + α + β + 1 α + 1 ; 1 x 2 ) ,
18.5.8 P n ( α , β ) ( x ) = 2 n = 0 n ( n + α ) ( n + β n ) ( x 1 ) n ( x + 1 ) = ( α + 1 ) n n ! ( x + 1 2 ) n F 1 2 ( n , n β α + 1 ; x 1 x + 1 ) ,
18.5.10 C n ( λ ) ( x ) = = 0 n / 2 ( 1 ) ( λ ) n ! ( n 2 ) ! ( 2 x ) n 2 = ( 2 x ) n ( λ ) n n ! F 1 2 ( 1 2 n , 1 2 n + 1 2 1 λ n ; 1 x 2 ) ,
22: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
23: 18.23 Hahn Class: Generating Functions
18.23.1 F 1 1 ( x α + 1 ; z ) F 1 1 ( x N β + 1 ; z ) = n = 0 N ( N ) n ( β + 1 ) n n ! Q n ( x ; α , β , N ) z n , x = 0 , 1 , , N .
18.23.4 ( 1 z c ) x ( 1 z ) x β = n = 0 ( β ) n n ! M n ( x ; β , c ) z n , x = 0 , 1 , 2 , , | z | < 1 .
18.23.6 F 1 1 ( a + i x 2 a ; i z ) F 1 1 ( b ¯ i x 2 b ; i z ) = n = 0 p n ( x ; a , b , a ¯ , b ¯ ) ( 2 a ) n ( 2 b ) n z n .
24: 18.7 Interrelations and Limit Relations
18.7.1 C n ( λ ) ( x ) = ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) ,
18.7.2 P n ( α , α ) ( x ) = ( α + 1 ) n ( 2 α + 1 ) n C n ( α + 1 2 ) ( x ) .
18.7.7 T n ( x ) = T n ( 2 x 1 ) ,
18.7.8 U n ( x ) = U n ( 2 x 1 ) .
18.7.10 P n ( x ) = P n ( 2 x 1 ) .
25: 6.2 Definitions and Interrelations
6.2.10 si ( z ) = z sin t t d t = Si ( z ) 1 2 π .
6.2.17 f ( z ) = Ci ( z ) sin z si ( z ) cos z ,
6.2.18 g ( z ) = Ci ( z ) cos z si ( z ) sin z .
26: 13.13 Addition and Multiplication Theorems
13.13.2 ( x + y x ) 1 b n = 0 ( 1 b ) n ( y / x ) n n ! M ( a , b n , x ) , | y | < | x | ,
13.13.3 ( x x + y ) a n = 0 ( a ) n y n n ! ( x + y ) n M ( a + n , b , x ) , ( y / x ) > 1 2 ,
13.13.7 n = 0 ( a ) n ( y ) n n ! U ( a + n , b + n , x ) , | y | < | x | ,
13.13.8 ( x + y x ) 1 b n = 0 ( 1 + a b ) n ( y / x ) n n ! U ( a , b n , x ) , | y | < | x | ,
27: 13.2 Definitions and Basic Properties
13.2.2 M ( a , b , z ) = s = 0 ( a ) s ( b ) s s ! z s = 1 + a b z + a ( a + 1 ) b ( b + 1 ) 2 ! z 2 + ,
13.2.3 𝐌 ( a , b , z ) = s = 0 ( a ) s Γ ( b + s ) s ! z s ,
13.2.15 U ( n + b 1 , b , z ) = ( 1 ) n ( 2 b ) n z 1 b + O ( z 2 b ) .
28: 18.1 Notation
18.1.2 G n ( p , q , x ) = n ! ( n + p ) n P n ( p q , q 1 ) ( 2 x 1 ) ,
29: 16.10 Expansions in Series of F q p Functions
16.10.1 F q + s p + r ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ζ ) = k = 0 ( 𝐚 ) k ( α ) k ( β ) k ( z ) k ( 𝐛 ) k ( γ + k ) k k ! F q + 1 p + 2 ( α + k , β + k , a 1 + k , , a p + k γ + 2 k + 1 , b 1 + k , , b q + k ; z ) F s + 2 r + 2 ( k , γ + k , c 1 , , c r α , β , d 1 , , d s ; ζ ) .
30: 13.6 Relations to Other Functions
13.6.11_1 M ( ν + 1 2 , 2 ν + 1 + n , 2 z ) = Γ ( ν ) e z ( z / 2 ) ν k = 0 n ( n ) k ( 2 ν ) k ( ν + k ) ( 2 ν + 1 + n ) k k ! I ν + k ( z ) ,
13.6.11_2 M ( ν + 1 2 , 2 ν + 1 n , 2 z ) = Γ ( ν n ) e z ( z / 2 ) n ν k = 0 n ( 1 ) k ( n ) k ( 2 ν 2 n ) k ( ν n + k ) ( 2 ν + 1 n ) k k ! I ν + k n ( z ) .