About the Project

shift of variable

AdvancedHelp

(0.004 seconds)

11—20 of 135 matching pages

11: 36.2 Catastrophes and Canonical Integrals
36.2.1 Φ K ( t ; 𝐱 ) = t K + 2 + m = 1 K x m t m .
36.2.2 Φ ( E ) ( s , t ; 𝐱 ) = s 3 3 s t 2 + z ( s 2 + t 2 ) + y t + x s , 𝐱 = { x , y , z } ,
36.2.3 Φ ( H ) ( s , t ; 𝐱 ) = s 3 + t 3 + z s t + y t + x s , 𝐱 = { x , y , z } ,
36.2.10 Ψ K ( 𝐱 ; k ) = k exp ( i k Φ K ( t ; 𝐱 ) ) d t , k > 0 .
For more extensive lists of normal forms of catastrophes (umbilic and beyond) involving two variables (“corank two”) see Arnol’d (1972, 1974, 1975). …
12: 5.2 Definitions
5.2.5 ( a ) n = Γ ( a + n ) / Γ ( a ) , a 0 , 1 , 2 , .
5.2.6 ( a ) n = ( 1 ) n ( a n + 1 ) n ,
13: 1.9 Calculus of a Complex Variable
1.9.63 f ( m ) ( z ) = n = 0 ( n + 1 ) m a n + m ( z z 0 ) n , | z z 0 | < R , m = 0 , 1 , 2 , .
14: 18.28 Askey–Wilson Class
18.28.4 h 0 = ( a b c d ; q ) ( q , a b , a c , a d , b c , b d , c d ; q ) ,
18.28.25 P n ( λ 1 2 , λ 1 2 ) ( x | q ) = q 1 2 n λ ( q λ + 1 / 2 ; q ) n ( q 2 λ ; q ) n C n ( x ; q λ | q ) .
18.28.27 lim λ 0 r n ( b q x / ( 2 λ ) ; λ , q b λ 1 , q , a | q ) = ( b ) n q n ( n + 1 ) / 2 ( q a ; q ) n ( q b ; q ) n p n ( x ; a , b ; q ) .
18.28.32 lim β 0 C n ( x ; β | q ) = H n ( x | q ) ( q ; q ) n .
15: 15.8 Transformations of Variable
15.8.6 F ( m , b c ; z ) = ( b ) m ( c ) m ( z ) m F ( m , 1 c m 1 b m ; 1 z ) = ( b ) m ( c ) m ( 1 z ) m F ( m , c b 1 b m ; 1 1 z ) ,
15.8.7 F ( m , b c ; z ) = ( c b ) m ( c ) m F ( m , b b c m + 1 ; 1 z ) = ( c b ) m ( c ) m z m F ( m , 1 c m b c m + 1 ; 1 1 z ) ,
15.8.8 𝐅 ( a , a + m c ; z ) = ( z ) a Γ ( a + m ) k = 0 m 1 ( a ) k ( m k 1 ) ! k ! Γ ( c a k ) z k + ( z ) a Γ ( a ) k = 0 ( a + m ) k k ! ( k + m ) ! Γ ( c a k m ) ( 1 ) k z k m ( ln ( z ) + ψ ( k + 1 ) + ψ ( k + m + 1 ) ψ ( a + k + m ) ψ ( c a k m ) ) , | z | > 1 , | ph ( z ) | < π ,
15.8.9 𝐅 ( a , a + m c ; z ) = ( 1 z ) a Γ ( a + m ) Γ ( c a ) k = 0 m 1 ( a ) k ( c a m ) k ( m k 1 ) ! k ! ( z 1 ) k + ( 1 ) m ( 1 z ) a m Γ ( a ) Γ ( c a m ) k = 0 ( a + m ) k ( c a ) k k ! ( k + m ) ! ( 1 z ) k ( ln ( 1 z ) + ψ ( k + 1 ) + ψ ( k + m + 1 ) ψ ( a + k + m ) ψ ( c a + k ) ) , | z 1 | > 1 , | ph ( 1 z ) | < π .
15.8.10 𝐅 ( a , b a + b + m ; z ) = 1 Γ ( a + m ) Γ ( b + m ) k = 0 m 1 ( a ) k ( b ) k ( m k 1 ) ! k ! ( z 1 ) k ( z 1 ) m Γ ( a ) Γ ( b ) k = 0 ( a + m ) k ( b + m ) k k ! ( k + m ) ! ( 1 z ) k ( ln ( 1 z ) ψ ( k + 1 ) ψ ( k + m + 1 ) + ψ ( a + k + m ) + ψ ( b + k + m ) ) , | z 1 | < 1 , | ph ( 1 z ) | < π ,
16: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
17: 15.16 Products
15.16.3 F ( a , b c ; z ) F ( a , b c ; ζ ) = s = 0 ( a ) s ( b ) s ( c a ) s ( c b ) s ( c ) s ( c ) 2 s s ! ( z ζ ) s F ( a + s , b + s c + 2 s ; z + ζ z ζ ) , | z | < 1 , | ζ | < 1 , | z + ζ z ζ | < 1 .
18: 17.3 q -Elementary and q -Special Functions
17.3.1 e q ( x ) = n = 0 ( 1 q ) n x n ( q ; q ) n = 1 ( ( 1 q ) x ; q ) ,
17.3.2 E q ( x ) = n = 0 ( 1 q ) n q ( n 2 ) x n ( q ; q ) n = ( ( 1 q ) x ; q ) .
17.3.3 sin q ( x ) = 1 2 i ( e q ( i x ) e q ( i x ) ) = n = 0 ( 1 q ) 2 n + 1 ( 1 ) n x 2 n + 1 ( q ; q ) 2 n + 1 ,
17.3.4 Sin q ( x ) = 1 2 i ( E q ( i x ) E q ( i x ) ) = n = 0 ( 1 q ) 2 n + 1 q n ( 2 n + 1 ) ( 1 ) n x 2 n + 1 ( q ; q ) 2 n + 1 .
17.3.6 Cos q ( x ) = 1 2 ( E q ( i x ) + E q ( i x ) ) = n = 0 ( 1 q ) 2 n q n ( 2 n 1 ) ( 1 ) n x 2 n ( q ; q ) 2 n .
19: 8.21 Generalized Sine and Cosine Integrals
8.21.16 Si ( a , z ) = z a k = 0 ( 2 k + 3 2 ) ( 1 1 2 a ) k ( 1 2 + 1 2 a ) k + 1 𝗃 2 k + 1 ( z ) , a 1 , 3 , 5 , ,
8.21.17 Ci ( a , z ) = z a k = 0 ( 2 k + 1 2 ) ( 1 2 1 2 a ) k ( 1 2 a ) k + 1 𝗃 2 k ( z ) , a 0 , 2 , 4 , .
8.21.26 f ( a , z ) z a 1 k = 0 ( 1 ) k ( 1 a ) 2 k z 2 k ,
8.21.27 g ( a , z ) z a 1 k = 0 ( 1 ) k ( 1 a ) 2 k + 1 z 2 k + 1 .
20: 13.29 Methods of Computation
13.29.3 e 1 2 z = s = 0 ( 2 μ ) s ( 1 2 + μ κ ) s ( 2 μ ) 2 s s ! ( z ) s y ( s ) ,
13.29.7 z a = s = 0 ( a b + 1 ) s s ! w ( s ) ,