About the Project

real part

AdvancedHelp

(0.008 seconds)

21—30 of 249 matching pages

21: 12.12 Integrals
12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
22: 5.12 Beta Function
In (5.12.1)–(5.12.4) it is assumed a > 0 and b > 0 . …
5.12.7 0 cosh ( 2 b t ) ( cosh t ) 2 a d t = 4 a 1 B ( a + b , a b ) , a > | b | .
5.12.8 1 2 π d t ( w + i t ) a ( z i t ) b = ( w + z ) 1 a b ( a + b 1 ) B ( a , b ) , ( a + b ) > 1 , w > 0 , z > 0 .
5.12.9 1 2 π i c i c + i t a ( 1 t ) 1 b d t = 1 b B ( a , b ) , 0 < c < 1 , ( a + b ) > 0 .
when b > 0 , a is not an integer and the contour cuts the real axis between 1 and the origin. …
23: 19.3 Graphics
See accompanying text
Figure 19.3.7: K ( k ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.9: ( K ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . The real part is symmetric under reflection in the real axis. … Magnify 3D Help
See accompanying text
Figure 19.3.11: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . The real part is symmetric under reflection in the real axis. … Magnify 3D Help
24: 8.6 Integral Representations
8.6.2 γ ( a , z ) = z 1 2 a 0 e t t 1 2 a 1 J a ( 2 z t ) d t , a > 0 .
8.6.3 γ ( a , z ) = z a 0 exp ( a t z e t ) d t , a > 0 .
8.6.5 Γ ( a , z ) = z a e z 0 e z t ( 1 + t ) 1 a d t , z > 0 ,
8.6.7 Γ ( a , z ) = z a 0 exp ( a t z e t ) d t , z > 0 .
8.6.9 Γ ( a , z e ± π i ) = e z e π i a Γ ( 1 + a ) 0 t a e z t t 1 d t , z > 0 , a > 1 ,
25: 11.7 Integrals and Sums
11.7.6 f ν + 1 ( z ) = ( 2 ν + 1 ) f ν ( z ) z ν + 1 𝐇 ν ( z ) + ( 1 2 z 2 ) ν + 1 ( ν + 1 ) π Γ ( ν + 3 2 ) , ν > 1 .
11.7.9 0 𝐇 ν ( t ) d t = cot ( 1 2 π ν ) , 2 < ν < 0 ,
11.7.10 0 t ν 1 𝐇 ν ( t ) d t = π 2 ν + 1 Γ ( ν + 1 ) , ν > 3 2 ,
11.7.11 0 t μ ν 1 𝐇 ν ( t ) d t = Γ ( 1 2 μ ) 2 μ ν 1 tan ( 1 2 π μ ) Γ ( ν 1 2 μ + 1 ) , | μ | < 1 , ν > μ 3 2 ,
The following Laplace transforms of 𝐇 ν ( t ) require a > 0 for convergence, while those of 𝐋 ν ( t ) require a > 1 . …
26: 35.3 Multivariate Gamma and Beta Functions
35.3.2 Γ m ( s 1 , , s m ) = 𝛀 etr ( 𝐗 ) | 𝐗 | s m 1 2 ( m + 1 ) j = 1 m 1 | ( 𝐗 ) j | s j s j + 1 d 𝐗 , s j , ( s j ) > 1 2 ( j 1 ) , j = 1 , , m .
35.3.3 B m ( a , b ) = 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 2 ( m + 1 ) d 𝐗 , ( a ) , ( b ) > 1 2 ( m 1 ) .
27: 8.22 Mathematical Applications
The function Γ ( a , z ) , with | ph a | 1 2 π and ph z = 1 2 π , has an intimate connection with the Riemann zeta function ζ ( s ) 25.2(i)) on the critical line s = 1 2 . …
8.22.2 ζ x ( s ) = 1 Γ ( s ) 0 x t s 1 e t 1 d t , s > 1 ,
8.22.3 ζ x ( s ) = k = 1 k s P ( s , k x ) , s > 1 .
28: 25.11 Hurwitz Zeta Function
As a function of a , with s ( 1 ) fixed, ζ ( s , a ) is analytic in the half-plane a > 0 . … For most purposes it suffices to restrict 0 < a 1 because of the following straightforward consequences of (25.11.1): …
25.11.9 ζ ( 1 s , a ) = 2 Γ ( s ) ( 2 π ) s n = 1 1 n s cos ( 1 2 π s 2 n π a ) , s > 0 if 0 < a < 1 ; s > 1 if a = 1 .
Throughout this subsection a > 0 . … As β ± with s fixed, s > 1 , …
29: 10.43 Integrals
when α > 0 and x > 0 , and by analytic continuation elsewhere. … When μ > | ν | , …
10.43.23 0 t ν + 1 I ν ( b t ) exp ( p 2 t 2 ) d t = b ν ( 2 p 2 ) ν + 1 exp ( b 2 4 p 2 ) , ν > 1 , ( p 2 ) > 0 ,
10.43.24 0 I ν ( b t ) exp ( p 2 t 2 ) d t = π 2 p exp ( b 2 8 p 2 ) I 1 2 ν ( b 2 8 p 2 ) , ν > 1 , ( p 2 ) > 0 ,
10.43.28 0 t exp ( p 2 t 2 ) I ν ( a t ) I ν ( b t ) d t = 1 2 p 2 exp ( a 2 + b 2 4 p 2 ) I ν ( a b 2 p 2 ) , ν > 1 , ( p 2 ) > 0 ,
30: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.4 arctan z = ± π 2 1 z + 1 3 z 3 1 5 z 5 + , z 0 , | z | 1 .
4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
4.24.10 d d z arccsc z = 1 z ( z 2 1 ) 1 / 2 , z 0 .
4.24.11 d d z arcsec z = ± 1 z ( z 2 1 ) 1 / 2 , z 0 .