About the Project

real

AdvancedHelp

(0.001 seconds)

21—30 of 641 matching pages

21: 5.12 Beta Function
In (5.12.1)–(5.12.4) it is assumed a > 0 and b > 0 . …
5.12.5 0 π / 2 ( cos t ) a 1 cos ( b t ) d t = π 2 a 1 a B ( 1 2 ( a + b + 1 ) , 1 2 ( a b + 1 ) ) , a > 0 .
5.12.7 0 cosh ( 2 b t ) ( cosh t ) 2 a d t = 4 a 1 B ( a + b , a b ) , a > | b | .
5.12.8 1 2 π d t ( w + i t ) a ( z i t ) b = ( w + z ) 1 a b ( a + b 1 ) B ( a , b ) , ( a + b ) > 1 , w > 0 , z > 0 .
when b > 0 , a is not an integer and the contour cuts the real axis between 1 and the origin. …
22: 20.16 Software
§20.16(ii) Real Argument and Parameter
23: 22.22 Software
§22.22(ii) Real Argument
24: 31.1 Special Notation
x , y real variables.
q , α , β , γ , δ , ϵ , ν complex parameters.
25: 33.17 Recurrence Relations and Derivatives
33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
26: 13.10 Integrals
13.10.4 0 e z t t b 1 𝐌 ( a , b , t ) d t = z b ( 1 1 z ) a , b > 0 , z > 1 ,
13.10.5 0 e t t b 1 𝐌 ( a , c , t ) d t = Γ ( b ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) , ( c a ) > b > 0 ,
13.10.10 0 t λ 1 𝐌 ( a , b , t ) d t = Γ ( λ ) Γ ( a λ ) Γ ( a ) Γ ( b λ ) , 0 < λ < a ,
13.10.13 0 e t t b 1 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x a + 1 2 ν e x 𝐌 ( ν b + 1 , ν a + 1 , x ) , x > 0 , 2 a < ν + 5 2 , b > 0 ,
13.10.15 0 t 1 2 ν U ( a , b , t ) J ν ( 2 x t ) d t = Γ ( ν b + 2 ) Γ ( a ) x 1 2 ν U ( ν b + 2 , ν a + 2 , x ) , x > 0 , max ( b 2 , 1 ) < ν < 2 a + 1 2 ,
27: 9.14 Incomplete Airy Functions
Incomplete Airy functions are defined by the contour integral (9.5.4) when one of the integration limits is replaced by a variable real or complex parameter. …
28: 31.12 Confluent Forms of Heun’s Equation
31.12.1 d 2 w d z 2 + ( γ z + δ z 1 + ϵ ) d w d z + α z q z ( z 1 ) w = 0 .
31.12.2 d 2 w d z 2 + ( δ z 2 + γ z + 1 ) d w d z + α z q z 2 w = 0 .
31.12.3 d 2 w d z 2 ( γ z + δ + z ) d w d z + α z q z w = 0 .
31.12.4 d 2 w d z 2 + ( γ + z ) z d w d z + ( α z q ) w = 0 .
29: 15.5 Derivatives and Contiguous Functions
15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
30: 7.25 Software
§7.25(ii) erf x , erfc x , i n erfc ( x ) , x
§7.25(iv) C ( x ) , S ( x ) , f ( x ) , g ( x ) , x
§7.25(vi) ( x ) , G ( x ) , 𝖴 ( x , t ) , 𝖵 ( x , t ) , x