About the Project

q-zAl-Salam--Chihara polynomials

AdvancedHelp

(0.003 seconds)

11—20 of 255 matching pages

11: 18.20 Hahn Class: Explicit Representations
§18.20(i) Rodrigues Formulas
For the Hahn polynomials p n ( x ) = Q n ( x ; α , β , N ) and …For the Krawtchouk, Meixner, and Charlier polynomials, F ( x ) and κ n are as in Table 18.20.1. …
§18.20(ii) Hypergeometric Function and Generalized Hypergeometric Functions
(For symmetry properties of p n ( x ; a , b , a ¯ , b ¯ ) with respect to a , b , a ¯ , b ¯ see Andrews et al. (1999, Corollary 3.3.4).) …
12: Bibliography N
  • P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • M. Noumi and Y. Yamada (1999) Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, pp. 53–86.
  • 13: Bibliography Z
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • A. S. Zhedanov (1991) “Hidden symmetry” of Askey-Wilson polynomials. Theoret. and Math. Phys. 89 (2), pp. 1146–1157.
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • 14: 24.18 Physical Applications
    §24.18 Physical Applications
    Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
    15: Bibliography C
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • J. M. Carnicer, E. Mainar, and J. M. Peña (2020) Stability properties of disk polynomials. Numer. Algorithms.
  • L. Chihara (1987) On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18 (1), pp. 191–207.
  • T. S. Chihara (1978) An Introduction to Orthogonal Polynomials. Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York.
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111–119.
  • 16: 24.3 Graphs
    See accompanying text
    Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
    See accompanying text
    Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
    17: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . … Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    18: 18.7 Interrelations and Limit Relations
    §18.7 Interrelations and Limit Relations
    Chebyshev, Ultraspherical, and Jacobi
    Legendre, Ultraspherical, and Jacobi
    §18.7(ii) Quadratic Transformations
    §18.7(iii) Limit Relations
    19: 18.40 Methods of Computation
    §18.40(i) Computation of Polynomials
    Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). … … The theory behind these remarks is in Shohat and Tamarkin (1970), Akhiezer (2021), Chihara (1978). … The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). …
    20: 18.41 Tables
    §18.41(i) Polynomials
    For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …