About the Project

q-binomial%20series

AdvancedHelp

(0.003 seconds)

21—30 of 336 matching pages

21: Bibliography P
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.
  • 22: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • W. B. Ford (1960) Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series. Chelsea Publishing Co., New York.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 23: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 24: 20.11 Generalizations and Analogs
    §20.11(ii) Ramanujan’s Theta Function and q -Series
    In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). … For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). …
    25: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. W. Stanton (Eds.) (2000) q -Series from a Contemporary Perspective. Contemporary Mathematics, Vol. 254, American Mathematical Society, Providence, RI.
  • C. Itzykson and J. B. Zuber (1980) Quantum Field Theory. International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
  • 26: 12.20 Approximations
    §12.20 Approximations
    Luke (1969b, pp. 25 and 35) gives Chebyshev-series expansions for the confluent hypergeometric functions U ( a , b , x ) and M ( a , b , x ) 13.2(i)) whose regions of validity include intervals with endpoints x = and x = 0 , respectively. As special cases of these results a Chebyshev-series expansion for U ( a , x ) valid when λ x < follows from (12.7.14), and Chebyshev-series expansions for U ( a , x ) and V ( a , x ) valid when 0 x λ follow from (12.4.1), (12.4.2), (12.7.12), and (12.7.13). …
    27: 16.20 Integrals and Series
    §16.20 Integrals and Series
    Series of the Meijer G -function are given in Erdélyi et al. (1953a, §5.5.1), Luke (1975, §5.8), and Prudnikov et al. (1990, §6.11). …
    28: 8 Incomplete Gamma and Related
    Functions
    29: 28 Mathieu Functions and Hill’s Equation
    30: 4.33 Maclaurin Series and Laurent Series
    §4.33 Maclaurin Series and Laurent Series