About the Project

phase shift (or phase)

AdvancedHelp

(0.002 seconds)

31—40 of 42 matching pages

31: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.7 z 1 2 = exp ( 1 2 ln | z | + 1 2 i ph z ) .
Corresponding expansions for other ranges of ph z can be obtained by combining (10.17.3), (10.17.5), (10.17.6) with the continuation formulas (10.11.1), (10.11.3), (10.11.4) (or (10.11.7), (10.11.8)), and also the connection formula given by the second of (10.4.4). …
10.17.15 𝒱 z , i ( t ) { | z | , 0 ph z π , χ ( ) | z | , 1 2 π ph z 0  or  π ph z 3 2 π , 2 χ ( ) | z | , π < ph z 1 2 π  or  3 2 π ph z < 2 π ,
10.17.18 R m , ± ( ν , z ) = O ( e 2 | z | z m ) , | ph ( z e 1 2 π i ) | π .
32: 13.29 Methods of Computation
For M ( a , b , z ) and M κ , μ ( z ) this means that in the sector | ph z | π we may integrate along outward rays from the origin with initial values obtained from (13.2.2) and (13.14.2). For U ( a , b , z ) and W κ , μ ( z ) we may integrate along outward rays from the origin in the sectors 1 2 π < | ph z | < 3 2 π , with initial values obtained from connection formulas in §13.2(vii), §13.14(vii). In the sector | ph z | < 1 2 π the integration has to be towards the origin, with starting values computed from asymptotic expansions (§§13.7 and 13.19). On the rays ph z = ± 1 2 π , integration can proceed in either direction. …
33: 15.16 Products
15.16.3 F ( a , b c ; z ) F ( a , b c ; ζ ) = s = 0 ( a ) s ( b ) s ( c a ) s ( c b ) s ( c ) s ( c ) 2 s s ! ( z ζ ) s F ( a + s , b + s c + 2 s ; z + ζ z ζ ) , | z | < 1 , | ζ | < 1 , | z + ζ z ζ | < 1 .
15.16.5 F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) + F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) = Γ ( 1 + λ + μ ) Γ ( 1 + ν + μ ) Γ ( λ + μ + ν + 3 2 ) Γ ( 1 2 + ν ) , | ph z | < π , | ph ( 1 z ) | < π .
34: 16.2 Definition and Analytic Properties
The branch obtained by introducing a cut from 1 to + on the real axis, that is, the branch in the sector | ph ( 1 z ) | π , is the principal branch (or principal value) of F q q + 1 ( 𝐚 ; 𝐛 ; z ) ; compare §4.2(i). …
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;
35: 6.18 Methods of Computation
Also, other ranges of ph z can be covered by use of the continuation formulas of §6.4. … Zeros of Ci ( x ) and si ( x ) can be computed to high precision by Newton’s rule (§3.8(ii)), using values supplied by the asymptotic expansion (6.13.2) as initial approximations. …
36: 6.2 Definitions and Interrelations
6.2.2 E 1 ( z ) = e z 0 e t t + z d t , | ph z | < π .
6.2.10 si ( z ) = z sin t t d t = Si ( z ) 1 2 π .
6.2.17 f ( z ) = Ci ( z ) sin z si ( z ) cos z ,
6.2.18 g ( z ) = Ci ( z ) cos z si ( z ) sin z .
37: 2.6 Distributional Methods
To derive an asymptotic expansion of 𝒮 f ( z ) for large values of | z | , with | ph z | < π , we assume that f ( t ) possesses an asymptotic expansion of the form …
2.6.13 t s α , ϕ = 1 ( α ) s 0 t α ϕ ( s ) ( t ) d t , ϕ 𝒯 ,
The expansion (2.6.7) follows immediately from (2.6.27) with z = x and f ( t ) = ( 1 + t ) ( 1 / 3 ) ; its region of validity is | ph x | π δ ( < π ). …
38: 17.6 ϕ 1 2 Function
17.6.5 ϕ 1 2 ( a , b a q / b ; q , q / b ) = ( q ; q ) ( a q , a q 2 / b 2 ; q 2 ) ( q / b , a q / b ; q ) , | b | > | q | .
17.6.8 ϕ 1 2 ( a , b c ; q , z ) = ( a b z / c ; q ) ( z ; q ) ϕ 1 2 ( c / a , c / b c ; q , a b z / c ) , | z | < 1 , | a b z | < | c | .
where | z | < 1 , | ph ( z ) | < π , and the contour of integration separates the poles of ( q 1 + ζ , c q ζ ; q ) / sin ( π ζ ) from those of 1 / ( a q ζ , b q ζ ; q ) , and the infimum of the distances of the poles from the contour is positive. …
39: Bibliography T
  • Go. Torres-Vega, J. D. Morales-Guzmán, and A. Zúñiga-Segundo (1998) Special functions in phase space: Mathieu functions. J. Phys. A 31 (31), pp. 6725–6739.
  • S. Tsujimoto, L. Vinet, and A. Zhedanov (2012) Dunkl shift operators and Bannai-Ito polynomials. Adv. Math. 229 (4), pp. 2123–2158.
  • 40: 13.14 Definitions and Basic Properties
    13.14.20 M κ , μ ( z ) Γ ( 1 + 2 μ ) e 1 2 z z κ / Γ ( 1 2 + μ κ ) , | ph z | 1 2 π δ ,
    W κ , μ ( e π i z ) , 1 2 π ph z 3 2 π ,
    W κ , μ ( e π i z ) , 3 2 π ph z 1 2 π .
    A fundamental pair of solutions that is numerically satisfactory in the sector | ph z | π near the origin is …