About the Project

partial derivatives

AdvancedHelp

(0.004 seconds)

21—30 of 59 matching pages

21: 14.30 Spherical and Spheroidal Harmonics
β–Ί
14.30.10 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ W ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ W ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 W Ο• 2 = 0 ,
β–Ί
14.30.12 L 2 = ℏ 2 ⁒ ( 1 sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ ΞΈ ) + 1 sin 2 ⁑ ΞΈ ⁒ 2 Ο• 2 ) ,
β–Ί
14.30.13 L z = i ⁒ ℏ ⁒ Ο• ;
22: 21.9 Integrable Equations
β–ΊHere, and in what follows, x , y , and t suffixes indicate partial derivatives. … β–Ί
21.9.4 u ⁑ ( x , y , t ) = c + 2 ⁒ 2 x 2 ⁑ ln ⁑ ( ΞΈ ⁑ ( 𝐀 ⁒ x + π₯ ⁒ y + 𝝎 ⁒ t + Ο• | 𝛀 ) ) ,
23: 7.19 Voigt Functions
β–Ί
7.19.8 𝖡 ⁑ ( x , t ) = x ⁒ 𝖴 ⁑ ( x , t ) + 2 ⁒ t ⁒ 𝖴 ⁑ ( x , t ) x ,
β–Ί
7.19.9 𝖴 ⁑ ( x , t ) = 1 x ⁒ 𝖡 ⁑ ( x , t ) 2 ⁒ t ⁒ 𝖡 ⁑ ( x , t ) x .
24: 28.33 Physical Applications
β–Ί
28.33.1 2 W x 2 + 2 W y 2 ρ Ο„ ⁒ 2 W t 2 = 0 ,
25: 30.14 Wave Equation in Oblate Spheroidal Coordinates
β–Ί
30.14.6 2 = 1 c 2 ⁒ ( ΞΎ 2 + Ξ· 2 ) ⁒ ( ΞΎ ⁑ ( ( ΞΎ 2 + 1 ) ⁒ ΞΎ ) + Ξ· ⁑ ( ( 1 Ξ· 2 ) ⁒ Ξ· ) + ΞΎ 2 + Ξ· 2 ( ΞΎ 2 + 1 ) ⁒ ( 1 Ξ· 2 ) ⁒ 2 Ο• 2 ) .
26: 1.9 Calculus of a Complex Variable
β–Ί
u x = v y ,
β–Ί
u y = v x
β–ΊConversely, if at a given point ( x , y ) the partial derivatives u / x , u / y , v / x , and v / y exist, are continuous, and satisfy (1.9.25), then f ⁑ ( z ) is differentiable at z = x + i ⁒ y . … β–Ί
1.9.26 2 u x 2 + 2 u y 2 = 2 v x 2 + 2 v y 2 = 0 ,
β–Ί
1.9.27 2 u r 2 + 1 r ⁒ u r + 1 r 2 ⁒ 2 u θ 2 = 0
27: 23.15 Definitions
β–Ί
23.15.8 θ 1 ⁑ ( 0 , q ) = θ 1 ⁑ ( z , q ) / z | z = 0 .
28: 21.7 Riemann Surfaces
β–Ί
21.7.7 ( z 1 ⁑ ΞΈ ⁒ [ 𝜢 𝜷 ] ⁑ ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 , , z g ⁑ ΞΈ ⁒ [ 𝜢 𝜷 ] ⁑ ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 ) 𝟎 .
β–Ί
29: 2.4 Contour Integrals
β–ΊSuppose that on the integration path 𝒫 there are two simple zeros of p ⁑ ( Ξ± , t ) / t that coincide for a certain value Ξ± ^ of Ξ± . … β–Ίwith a and b chosen so that the zeros of p ⁑ ( Ξ± , t ) / t correspond to the zeros w 1 ⁑ ( Ξ± ) , w 2 ⁑ ( Ξ± ) , say, of the quadratic w 2 + 2 ⁒ a ⁒ w + b . … β–Ί
2.4.20 f ⁑ ( α , w ) = q ⁑ ( α , t ) ⁒ d t d w = q ⁑ ( α , t ) ⁒ w 2 + 2 ⁒ a ⁒ w + b p ⁑ ( α , t ) / t .
30: 31.9 Orthogonality
β–Ί
31.9.3 ΞΈ m = ( 1 e 2 ⁒ Ο€ ⁒ i ⁒ Ξ³ ) ⁒ ( 1 e 2 ⁒ Ο€ ⁒ i ⁒ Ξ΄ ) ⁒ ΞΆ Ξ³ ⁒ ( 1 ΞΆ ) Ξ΄ ⁒ ( ΞΆ a ) Ο΅ ⁒ f 0 ⁑ ( q , ΞΆ ) f 1 ⁑ ( q , ΞΆ ) ⁒ q ⁑ 𝒲 ⁑ { f 0 ⁑ ( q , ΞΆ ) , f 1 ⁑ ( q , ΞΆ ) } | q = q m ,