About the Project

partial

AdvancedHelp

(0.000 seconds)

31—40 of 95 matching pages

31: 30.14 Wave Equation in Oblate Spheroidal Coordinates
30.14.6 2 = 1 c 2 ( ξ 2 + η 2 ) ( ξ ( ( ξ 2 + 1 ) ξ ) + η ( ( 1 η 2 ) η ) + ξ 2 + η 2 ( ξ 2 + 1 ) ( 1 η 2 ) 2 ϕ 2 ) .
32: 1.9 Calculus of a Complex Variable
u x = v y ,
u y = v x
Conversely, if at a given point ( x , y ) the partial derivatives u / x , u / y , v / x , and v / y exist, are continuous, and satisfy (1.9.25), then f ( z ) is differentiable at z = x + i y . …
1.9.26 2 u x 2 + 2 u y 2 = 2 v x 2 + 2 v y 2 = 0 ,
1.9.27 2 u r 2 + 1 r u r + 1 r 2 2 u θ 2 = 0
33: 23.15 Definitions
23.15.8 θ 1 ( 0 , q ) = θ 1 ( z , q ) / z | z = 0 .
34: 21.7 Riemann Surfaces
35: 24.20 Tables
In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
36: Mark J. Ablowitz
Widespread interest in Painlevé equations re-emerged in the 1970s and thereafter partially due to the connection with IST and integrable systems. …
37: Bonita V. Saunders
Her research interests include numerical grid generation, numerical solution of partial differential equations, and visualization of special functions. …
38: 31.9 Orthogonality
31.9.3 θ m = ( 1 e 2 π i γ ) ( 1 e 2 π i δ ) ζ γ ( 1 ζ ) δ ( ζ a ) ϵ f 0 ( q , ζ ) f 1 ( q , ζ ) q 𝒲 { f 0 ( q , ζ ) , f 1 ( q , ζ ) } | q = q m ,
39: 36.11 Leading-Order Asymptotics
36.11.2 Ψ K ( 𝐱 ) = 2 π j = 1 j max ( 𝐱 ) exp ( i ( Φ K ( t j ( 𝐱 ) ; 𝐱 ) + 1 4 π ( 1 ) j + K + 1 ) ) | 2 Φ K ( t j ( 𝐱 ) ; 𝐱 ) t 2 | 1 / 2 ( 1 + o ( 1 ) ) .
40: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7(iii) Partial Differential Equations
Subject to the conditions (a)–(c), the function f ( 𝐓 ) = F 1 2 ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equation
35.7.9 t j ( 1 t j ) 2 F t j 2 1 2 k = 1 k j m t k ( 1 t k ) t j t k F t k + ( c 1 2 ( m 1 ) ( a + b 1 2 ( m 3 ) ) t j + 1 2 k = 1 k j m t j ( 1 t j ) t j t k ) F t j = a b F ,
Systems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …