About the Project

partial%20fractions

AdvancedHelp

(0.001 seconds)

11—20 of 256 matching pages

11: 1.12 Continued Fractions
§1.12 Continued Fractions
Equivalence
Series
Fractional Transformations
12: 16.14 Partial Differential Equations
§16.14 Partial Differential Equations
§16.14(i) Appell Functions
x ( 1 x ) 2 F 1 x 2 + y ( 1 x ) 2 F 1 x y + ( γ ( α + β + 1 ) x ) F 1 x β y F 1 y α β F 1 = 0 ,
y ( 1 y ) 2 F 1 y 2 + x ( 1 y ) 2 F 1 x y + ( γ ( α + β + 1 ) y ) F 1 y β x F 1 x α β F 1 = 0 ,
In addition to the four Appell functions there are 24 other sums of double series that cannot be expressed as a product of two F 1 2 functions, and which satisfy pairs of linear partial differential equations of the second order. …
13: 10.38 Derivatives with Respect to Order
For I ν ( z ) / ν at ν = n combine (10.38.1), (10.38.2), and (10.38.4).
10.38.4 K ν ( z ) ν | ν = n = n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k K k ( z ) k ! ( n k ) .
I ν ( z ) ν | ν = 0 = K 0 ( z ) ,
14: 12.6 Continued Fraction
§12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
15: 14.30 Spherical and Spheroidal Harmonics
14.30.10 1 ρ 2 ρ ( ρ 2 W ρ ) + 1 ρ 2 sin θ θ ( sin θ W θ ) + 1 ρ 2 sin 2 θ 2 W ϕ 2 = 0 ,
14.30.12 L 2 = 2 ( 1 sin θ θ ( sin θ θ ) + 1 sin 2 θ 2 ϕ 2 ) ,
14.30.13 L z = i ϕ ;
16: Bibliography K
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • A. V. Kashevarov (2004) The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface. Technical Physics 49 (1), pp. 1–7.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • 17: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 18: 10.15 Derivatives with Respect to Order
    10.15.1 J ± ν ( z ) ν = ± J ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ( 1 ) k ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
    10.15.2 Y ν ( z ) ν = cot ( ν π ) ( J ν ( z ) ν π Y ν ( z ) ) csc ( ν π ) J ν ( z ) ν π J ν ( z ) .
    10.15.3 J ν ( z ) ν | ν = n = π 2 Y n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k J k ( z ) k ! ( n k ) .
    For J ν ( z ) / ν at ν = n combine (10.2.4) and (10.15.3). …
    10.15.5 J ν ( z ) ν | ν = 0 = π 2 Y 0 ( z ) , Y ν ( z ) ν | ν = 0 = π 2 J 0 ( z ) .
    19: 6.16 Mathematical Applications
    The n th partial sum is given by
    6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    20: 12.17 Physical Applications
    12.17.2 2 = 2 x 2 + 2 y 2 + 2 z 2
    12.17.4 1 ξ 2 + η 2 ( 2 w ξ 2 + 2 w η 2 ) + 2 w ζ 2 + k 2 w = 0 .