About the Project

partial%20differentiation

AdvancedHelp

(0.001 seconds)

11—20 of 233 matching pages

11: 16.14 Partial Differential Equations
§16.14 Partial Differential Equations
β–Ί
§16.14(i) Appell Functions
β–Ί
x ⁒ ( 1 x ) ⁒ 2 F 1 x 2 + y ⁒ ( 1 x ) ⁒ 2 F 1 x ⁒ y + ( γ ( α + β + 1 ) ⁒ x ) ⁒ F 1 x β ⁒ y ⁒ F 1 y α ⁒ β ⁒ F 1 = 0 ,
β–Ί
y ⁒ ( 1 y ) ⁒ 2 F 1 y 2 + x ⁒ ( 1 y ) ⁒ 2 F 1 x ⁒ y + ( γ ( α + β + 1 ) ⁒ y ) ⁒ F 1 y β ⁒ x ⁒ F 1 x α ⁒ β ⁒ F 1 = 0 ,
β–ΊIn addition to the four Appell functions there are 24 other sums of double series that cannot be expressed as a product of two F 1 2 functions, and which satisfy pairs of linear partial differential equations of the second order. …
12: 14.30 Spherical and Spheroidal Harmonics
β–Ί
14.30.10 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ W ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ W ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 W Ο• 2 = 0 ,
β–Ί
14.30.12 L 2 = ℏ 2 ⁒ ( 1 sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ ΞΈ ) + 1 sin 2 ⁑ ΞΈ ⁒ 2 Ο• 2 ) ,
β–Ί
14.30.13 L z = i ⁒ ℏ ⁒ Ο• ;
13: 1.9 Calculus of a Complex Variable
β–Ί
§1.9(ii) Continuity, Point Sets, and Differentiation
β–Ί
Differentiation
β–ΊDifferentiability automatically implies continuity. β–Ί
Cauchy–Riemann Equations
β–ΊConversely, if at a given point ( x , y ) the partial derivatives u / x , u / y , v / x , and v / y exist, are continuous, and satisfy (1.9.25), then f ⁑ ( z ) is differentiable at z = x + i ⁒ y . …
14: 6.16 Mathematical Applications
β–ΊThe n th partial sum is given by β–Ί
6.16.2 S n ⁑ ( x ) = k = 0 n 1 sin ⁑ ( ( 2 ⁒ k + 1 ) ⁒ x ) 2 ⁒ k + 1 = 1 2 ⁒ 0 x sin ⁑ ( 2 ⁒ n ⁒ t ) sin ⁑ t ⁒ d t = 1 2 ⁒ Si ⁑ ( 2 ⁒ n ⁒ x ) + R n ⁑ ( x ) ,
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 6.16.2: The logarithmic integral li ⁑ ( x ) , together with vertical bars indicating the value of Ο€ ⁑ ( x ) for x = 10 , 20 , , 1000 . Magnify
15: 12.17 Physical Applications
β–Ί
12.17.2 2 = 2 x 2 + 2 y 2 + 2 z 2
β–Ί
12.17.4 1 ξ 2 + η 2 ⁒ ( 2 w ξ 2 + 2 w η 2 ) + 2 w ΢ 2 + k 2 ⁒ w = 0 .
16: 9.18 Tables
β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 ; 8D.

  • β–Ί
  • Smirnov (1960) tabulates U 1 ⁑ ( x , Ξ± ) , U 2 ⁑ ( x , Ξ± ) , defined by (9.13.20), (9.13.21), and also U 1 ⁑ ( x , Ξ± ) / x , U 2 ⁑ ( x , Ξ± ) / x , for Ξ± = 1 , x = 6 ⁒ ( .01 ) ⁒ 10 to 5D or 5S, and also for Ξ± = ± 1 4 , ± 1 3 , ± 1 2 , ± 2 3 , ± 3 4 , 5 4 , 4 3 , 3 2 , 5 3 , 7 4 , 2, x = 0 ⁒ ( .01 ) ⁒ 6 ; 4D.

  • 17: 23.21 Physical Applications
    β–Ί
    §23.21(ii) Nonlinear Evolution Equations
    β–ΊAirault et al. (1977) applies the function to an integrable classical many-body problem, and relates the solutions to nonlinear partial differential equations. … β–Ί
    23.21.2 ( η ΢ ) ⁒ ( ΢ ξ ) ⁒ ( ξ η ) ⁒ 2 = ( ΢ η ) ⁒ f ⁑ ( ξ ) ⁒ f ⁑ ( ξ ) ⁒ ξ + ( ξ ΢ ) ⁒ f ⁑ ( η ) ⁒ f ⁑ ( η ) ⁒ η + ( η ξ ) ⁒ f ⁑ ( ΢ ) ⁒ f ⁑ ( ΢ ) ⁒ ΢ ,
    β–Ί
    23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .
    18: 3.8 Nonlinear Equations
    β–Ί β–Ί
    3.8.15 p ⁑ ( x ) = ( x 1 ) ⁒ ( x 2 ) ⁒ β‹― ⁒ ( x 20 )
    β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . … β–Ί
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ⁒ ) × 10 7 .
    19: 28.32 Mathematical Applications
    β–Ί β–Ί
    28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 ⁒ c 2 ⁒ k 2 ⁒ ( cosh ⁑ ( 2 ⁒ ξ ) cos ⁑ ( 2 ⁒ η ) ) ⁒ V = 0 .
    β–Ί
    28.32.4 2 K z 2 2 K ΢ 2 = 2 ⁒ q ⁒ ( cos ⁑ ( 2 ⁒ z ) cos ⁑ ( 2 ⁒ ΢ ) ) ⁒ K .
    β–Ί
    28.32.5 K ⁑ ( z , ΢ ) ⁒ d u ⁑ ( ΢ ) d ΢ u ⁑ ( ΢ ) ⁒ K ⁑ ( z , ΢ ) ΢
    20: 20.13 Physical Applications
    β–ΊThe functions ΞΈ j ⁑ ( z | Ο„ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation β–Ί
    20.13.1 ΞΈ ⁑ ( z | Ο„ ) / Ο„ = ΞΊ ⁒ 2 ΞΈ ⁑ ( z | Ο„ ) / z 2 ,
    β–Ί
    20.13.2 θ / t = α ⁒ 2 θ / z 2 ,