About the Project

orthogonality%20relation

AdvancedHelp

(0.002 seconds)

11—18 of 18 matching pages

11: Bibliography M
  • I. G. Macdonald (1998) Symmetric Functions and Orthogonal Polynomials. University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
  • I. Marquette and C. Quesne (2016) Connection between quantum systems involving the fourth Painlevé transcendent and k -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57 (5), pp. Paper 052101, 15 pp..
  • A. Máté, P. Nevai, and W. Van Assche (1991) The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators. Rocky Mountain J. Math. 21 (1), pp. 501–527.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 12: Bibliography C
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • B. C. Carlson and J. M. Keller (1957) Orthogonalization Procedures and the Localization of Wannier Functions. Phys. Rev. 105, pp. 102–103.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 13: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (2000a) An electrostatics model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2), pp. 355–369.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 14: Bibliography R
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • 15: Bibliography D
  • P. A. Deift (1998) Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical Sciences, New York.
  • P. Deift, T. Kriecherbauer, K. T. McLaughlin, S. Venakides, and X. Zhou (1999a) Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 (12), pp. 1491–1552.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 16: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • O. Szász (1951) On the relative extrema of the Hermite orthogonal functions. J. Indian Math. Soc. (N.S.) 15, pp. 129–134.
  • G. Szegö (1950) On certain special sets of orthogonal polynomials. Proc. Amer. Math. Soc. 1, pp. 731–737.
  • G. Szegő (1967) Orthogonal Polynomials. 3rd edition, American Mathematical Society, New York.
  • 17: 18.40 Methods of Computation
    Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). …For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. … See Gautschi (1983) for examples of numerically stable and unstable use of the above recursion relations, and how one can then usefully differentiate between numerical results of low and high precision, as produced thereby. … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
    18: 18.39 Applications in the Physical Sciences
    Kuijlaars and Milson (2015, §1) refer to these, in this case complex zeros, as exceptional, as opposed to regular, zeros of the EOP’s, these latter belonging to the (real) orthogonality integration range. … where the orthogonality measure is now d r , r [ 0 , ) . This is not the orthogonality of Table 18.8.1, as the co-ordinate arguments depend, independently on p and q . … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … These cases correspond to the two distinct orthogonality conditions of (18.35.6) and (18.35.6_3). …