About the Project

orders ±12

AdvancedHelp

(0.002 seconds)

11—20 of 67 matching pages

11: Nico M. Temme
On the occasion of his retirement in 2005 he was awarded the decoration Knight in the Order of the Dutch Lion, issued by the King of the Netherlands. …
  • In November 2015, Temme was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 3, 6, 7, and 12.
    12: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 13: 11.3 Graphics
    See accompanying text
    Figure 11.3.1: 𝐇 ν ( x ) for 0 x 12 and ν = 0 , 1 2 , 1 , 3 2 , 2 , 3 . Magnify
    See accompanying text
    Figure 11.3.3: 𝐇 ν ( x ) for 0 x 12 and ν = 3 , 2 , 3 2 , 1 , 1 2 . Magnify
    14: 14.26 Uniform Asymptotic Expansions
    §14.26 Uniform Asymptotic Expansions
    The uniform asymptotic approximations given in §14.15 for P ν μ ( x ) and 𝑸 ν μ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). …
    15: Bibliography M
  • A. J. MacLeod (1998) Algorithm 779: Fermi-Dirac functions of order 1 / 2 , 1 / 2 , 3 / 2 , 5 / 2 . ACM Trans. Math. Software 24 (1), pp. 1–12.
  • 16: 13.8 Asymptotic Approximations for Large Parameters
    13.8.17 M ( a , b , z ) = e ν z Γ ( b ) Γ ( a ) ( 1 + ( 1 ν ) ( 1 + 6 ν 2 z 2 ) 12 a + O ( 1 min ( a 2 , b 2 ) ) ) ,
    17: Bibliography G
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • É. Goursat (1883) Mémoire sur les fonctions hypergéométriques d’ordre supérieur. Ann. Sci. École Norm. Sup. (2) 12, pp. 261–286, 395–430 (French).
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • J. H. Gunn (1967) Algorithm 300: Coulomb wave functions. Comm. ACM 10 (4), pp. 244–245.
  • 18: 3.4 Differentiation
    3.4.23 2 u 0 , 0 x 2 = 1 12 h 2 ( u 2 , 0 + 16 u 1 , 0 30 u 0 , 0 + 16 u 1 , 0 u 2 , 0 ) + O ( h 4 ) ,
    3.4.29 2 u 0 , 0 = 1 12 h 2 ( 60 u 0 , 0 + 16 ( u 1 , 0 + u 0 , 1 + u 1 , 0 + u 0 , 1 ) ( u 2 , 0 + u 0 , 2 + u 2 , 0 + u 0 , 2 ) ) + O ( h 4 ) .
    19: 1.3 Determinants, Linear Operators, and Spectral Expansions
    1.3.1 det [ a j k ] = | a 11 a 12 a 21 a 22 | = a 11 a 22 a 12 a 21 .
    Higher-order determinants are natural generalizations. The minor M j k of the entry a j k in the n th-order determinant det [ a j k ] is the ( n 1 )th-order determinant derived from det [ a j k ] by deleting the j th row and the k th column. …An n th-order determinant expanded by its j th row is given by …
    1.3.8 | a 11 a 12 a 21 a 22 | 2 ( a 11 2 + a 12 2 ) ( a 21 2 + a 22 2 ) ,
    20: Bibliography D
  • P. Deift, T. Kriecherbauer, K. T. McLaughlin, S. Venakides, and X. Zhou (1999a) Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 (12), pp. 1491–1552.
  • A. R. DiDonato and A. H. Morris (1986) Computation of the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 12 (4), pp. 377–393.
  • D. Ding (2000) A simplified algorithm for the second-order sound fields. J. Acoust. Soc. Amer. 108 (6), pp. 2759–2764.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.