About the Project

ordering clonidine buy online usa DruGs-365.com/?id=1738

AdvancedHelp

Did you mean ordering clothoide buy online usa runs-365.comp/?id=1738 ?

(0.055 seconds)

1—10 of 280 matching pages

1: 28.12 Definitions and Basic Properties
The introduction to the eigenvalues and the functions of general order proceeds as in §§28.2(i), 28.2(ii), and 28.2(iii), except that we now restrict ν ^ 0 , 1 ; equivalently ν n . …
§28.12(ii) Eigenfunctions me ν ( z , q )
For q = 0 , …
2: 28.2 Definitions and Basic Properties
§28.2(vi) Eigenfunctions
3: 34.11 Higher-Order 3 n j Symbols
§34.11 Higher-Order 3 n j Symbols
4: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 5: 10.24 Functions of Imaginary Order
    §10.24 Functions of Imaginary Order
    and J ~ ν ( x ) , Y ~ ν ( x ) are linearly independent solutions of (10.24.1): … In consequence of (10.24.6), when x is large J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). … …
    6: 10.45 Functions of Imaginary Order
    §10.45 Functions of Imaginary Order
    and I ~ ν ( x ) , K ~ ν ( x ) are real and linearly independent solutions of (10.45.1): … The corresponding result for K ~ ν ( x ) is given by …
    7: 10.26 Graphics
    §10.26(i) Real Order and Variable
    §10.26(ii) Real Order, Complex Variable
    §10.26(iii) Imaginary Order, Real Variable
    See accompanying text
    Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
    8: 25.10 Zeros
    25.10.4 R ( t ) = ( 1 ) m 1 ( 2 π t ) 1 / 4 cos ( t ( 2 m + 1 ) 2 π t 1 8 π ) cos ( 2 π t ) + O ( t 3 / 4 ) .
    More than 41% of all the zeros in the critical strip lie on the critical line (Bui et al. (2011)). …
    9: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • R. F. Barrett (1964) Tables of modified Struve functions of orders zero and unity.
  • H. M. Bui, B. Conrey, and M. P. Young (2011) More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150 (1), pp. 35–64.
  • 10: 10.76 Approximations
    Real Variable and Order : Functions
    Real Variable and Order : Zeros
    Real Variable and Order : Integrals
    Complex Variable; Real Order
    Real Variable; Imaginary Order