About the Project

one variable

AdvancedHelp

(0.006 seconds)

41—50 of 314 matching pages

41: 12.17 Physical Applications
Setting w = U ( ξ ) V ( η ) W ( ζ ) and separating variables, we obtain … Buchholz (1969) collects many results on boundary-value problems involving PCFs. Miller (1974) treats separation of variables by group theoretic methods. Dean (1966) describes the role of PCFs in quantum mechanical systems closely related to the one-dimensional harmonic oscillator. Problems on high-frequency scattering in homogeneous media by parabolic cylinders lead to asymptotic methods for integrals involving PCFs. …
42: 30.5 Functions of the Second Kind
30.5.1 𝖰𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , .
30.5.2 𝖰𝗌 n m ( x , γ 2 ) = ( 1 ) n m + 1 𝖰𝗌 n m ( x , γ 2 ) ,
30.5.4 𝒲 { 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) } = ( n + m ) ! ( 1 x 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ( 0 ) ,
43: 10.40 Asymptotic Expansions for Large Argument
10.40.11 | R ( ν , z ) | 2 | a ( ν ) | 𝒱 z , ( t ) exp ( | ν 2 1 4 | 𝒱 z , ( t 1 ) ) ,
10.40.12 𝒱 z , ( t ) { | z | , | ph z | 1 2 π , χ ( ) | z | , 1 2 π | ph z | π , 2 χ ( ) | z | , π | ph z | < 3 2 π ,
44: 23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
45: 30.7 Graphics
See accompanying text
Figure 30.7.5: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.6: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.7: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.8: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.11: 𝖰𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 < x < 1 . Magnify
46: 10.17 Asymptotic Expansions for Large Argument
10.17.14 | R ± ( ν , z ) | 2 | a ( ν ) | 𝒱 z , ± i ( t ) exp ( | ν 2 1 4 | 𝒱 z , ± i ( t 1 ) ) ,
10.17.15 𝒱 z , i ( t ) { | z | , 0 ph z π , χ ( ) | z | , 1 2 π ph z 0  or  π ph z 3 2 π , 2 χ ( ) | z | , π < ph z 1 2 π  or  3 2 π ph z < 2 π ,
47: 30.4 Functions of the First Kind
30.4.1 1 1 ( 𝖯𝗌 n m ( x , γ 2 ) ) 2 d x = 2 2 n + 1 ( n + m ) ! ( n m ) ! ,
30.4.3 𝖯𝗌 n m ( x , γ 2 ) = ( 1 ) n m 𝖯𝗌 n m ( x , γ 2 ) .
30.4.4 𝖯𝗌 n m ( x , γ 2 ) = ( 1 x 2 ) 1 2 m k = 0 g k x k , 1 x 1 ,
48: Bibliography G
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • 49: 20.3 Graphics
    §20.3(i) θ -Functions: Real Variable and Real Nome
    See accompanying text
    Figure 20.3.13: θ 4 ( π x , q ) , 0 x 2 , 0 q 0.99 . Magnify 3D Help
    §20.3(ii) θ -Functions: Complex Variable and Real Nome
    §20.3(iii) θ -Functions: Real Variable and Complex Lattice Parameter
    See accompanying text
    Figure 20.3.21: θ 4 ( 0 | u + i v ) , 1 u 1 , 0.005 v 0.1 . Magnify 3D Help
    50: 14.19 Toroidal (or Ring) Functions
    14.19.2 P ν 1 2 μ ( cosh ξ ) = Γ ( 1 2 μ ) π 1 / 2 ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ 𝐅 ( 1 2 μ , 1 2 + ν μ ; 1 2 μ ; 1 e 2 ξ ) , μ 1 2 , 3 2 , 5 2 , .