About the Project

of type 2

AdvancedHelp

(0.006 seconds)

11—20 of 97 matching pages

11: Bibliography S
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • H. Skovgaard (1954) On inequalities of the Turán type. Math. Scand. 2, pp. 65–73.
  • 12: 19.2 Definitions
    19.2.6 D ( ϕ , k ) = 0 ϕ sin 2 θ d θ 1 k 2 sin 2 θ = 0 sin ϕ t 2 d t 1 t 2 1 k 2 t 2 = ( F ( ϕ , k ) E ( ϕ , k ) ) / k 2 .
    13: Bibliography P
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • 14: 8.10 Inequalities
    For further inequalities of these types see Qi and Mei (1999) and Neuman (2013). … For n = 1 , 2 , , …
    B 1 = x + 1 x + 2 a ,
    A 2 = x ( x + 3 a ) x 2 + 2 ( 2 a ) x + ( 1 a ) ( 2 a ) ,
    B 2 = x 2 + ( 5 a ) x + 2 x 2 + 2 ( 3 a ) x + ( 2 a ) ( 3 a ) .
    15: 12.12 Integrals
    12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
    Nicholson-type Integral
    12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
    When z ( = x ) is real the left-hand side equals ( F ( a , x ) ) 2 ; compare (12.2.22). … For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …
    16: 10.32 Integral Representations
    10.32.2 I ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e ± z cos θ ( sin θ ) 2 ν d θ = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 1 1 ( 1 t 2 ) ν 1 2 e ± z t d t , ν > 1 2 .
    10.32.8 K ν ( z ) = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 0 e z cosh t ( sinh t ) 2 ν d t = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 1 e z t ( t 2 1 ) ν 1 2 d t , ν > 1 2 , | ph z | < 1 2 π .
    Mellin–Barnes Type
    In (10.32.14) the integration contour separates the poles of Γ ( t ) from the poles of Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) . …
    Mellin–Barnes Type
    17: Bibliography T
  • N. M. Temme (1997) Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15 (2), pp. 207–225.
  • 18: 7.7 Integral Representations
    Integrals of the type e z 2 R ( z ) d z , where R ( z ) is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions. …
    19: 13.16 Integral Representations
    In this subsection see §§10.2(ii), 10.25(ii) for the functions J 2 μ , I 2 μ , and K 2 μ , and §§15.1, 15.2(i) for 𝐅 1 2 . …
    §13.16(iii) Mellin–Barnes Integrals
    If 1 2 + μ κ 0 , 1 , 2 , , then … If 1 2 ± μ κ 0 , 1 , 2 , , then …where the contour of integration passes all the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) on the right-hand side.
    20: 10.9 Integral Representations
    Also, ( t 2 1 ) ν 1 2 is continuous on the path, and takes its principal value at the intersection with the interval ( 1 , ) . …
    Mellin–Barnes Type Integrals
    where the integration path passes to the left of t = 0 , 1 , 2 , . … For (10.9.22)–(10.9.25) and further integrals of this type see Paris and Kaminski (2001, pp. 114–116). …
    Mellin–Barnes Type