About the Project

odd%20part

AdvancedHelp

(0.002 seconds)

21—30 of 400 matching pages

21: 30.9 Asymptotic Approximations and Expansions
β–Ί
2 20 ⁒ Ξ² 5 = 527 ⁒ q 7 61529 ⁒ q 5 10 43961 ⁒ q 3 22 41599 ⁒ q + 32 ⁒ m 2 ⁒ ( 5739 ⁒ q 5 + 1 27550 ⁒ q 3 + 2 98951 ⁒ q ) 2048 ⁒ m 4 ⁒ ( 355 ⁒ q 3 + 1505 ⁒ q ) + 65536 ⁒ m 6 ⁒ q .
β–ΊAs Ξ³ 2 , with q = n + 1 if n m is even, or q = n if n m is odd, we have …
22: 10.59 Integrals
23: 22.3 Graphics
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 22.3.13: sn ⁑ ( x , k ) for k = 1 e n , n = 0 to 20, 5 ⁒ Ο€ x 5 ⁒ Ο€ . Magnify 3D Help
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 22.3.26: Density plot of | sn ⁑ ( 5 , k ) | as a function of complex k 2 , 10 ⁑ ( k 2 ) 20 , 10 ⁑ ( k 2 ) 10 . … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 22.3.27: Density plot of | sn ⁑ ( 10 , k ) | as a function of complex k 2 , 10 ⁑ ( k 2 ) 20 , 10 ⁑ ( k 2 ) 10 . … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 22.3.28: Density plot of | sn ⁑ ( 20 , k ) | as a function of complex k 2 , 10 ⁑ ( k 2 ) 20 , 10 ⁑ ( k 2 ) 10 . … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 22.3.29: Density plot of | sn ⁑ ( 30 , k ) | as a function of complex k 2 , 10 ⁑ ( k 2 ) 20 , 10 ⁑ ( k 2 ) 10 . … Magnify
24: 9.18 Tables
β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Woodward and Woodward (1946) tabulates the real and imaginary parts of Ai ⁑ ( z ) , Ai ⁑ ( z ) , Bi ⁑ ( z ) , Bi ⁑ ( z ) for ⁑ z = 2.4 ⁒ ( .2 ) ⁒ 2.4 , ⁑ z = 2.4 ⁒ ( .2 ) ⁒ 0 . Precision is 4D.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Corless et al. (1992) gives the real and imaginary parts of Ξ² k for k = 1 ⁒ ( 1 ) ⁒ 13 ; 14S.

  • 25: 20.10 Integrals
    β–Ί
    20.10.1 0 x s 1 ⁒ ΞΈ 2 ⁑ ( 0 | i ⁒ x 2 ) ⁒ d x = 2 s ⁒ ( 1 2 s ) ⁒ Ο€ s / 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ s ) ⁒ ΞΆ ⁑ ( s ) , ⁑ s > 1 ,
    β–Ί
    20.10.2 0 x s 1 ⁒ ( ΞΈ 3 ⁑ ( 0 | i ⁒ x 2 ) 1 ) ⁒ d x = Ο€ s / 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ s ) ⁒ ΞΆ ⁑ ( s ) , ⁑ s > 1 ,
    β–Ί
    20.10.3 0 x s 1 ⁒ ( 1 ΞΈ 4 ⁑ ( 0 | i ⁒ x 2 ) ) ⁒ d x = ( 1 2 1 s ) ⁒ Ο€ s / 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ s ) ⁒ ΞΆ ⁑ ( s ) , ⁑ s > 0 .
    β–ΊLet s , β„“ , and Ξ² be constants such that ⁑ s > 0 , β„“ > 0 , and | ⁑ Ξ² | + | ⁑ Ξ² | β„“ . …
    26: 10.75 Tables
    β–Ί
  • Achenbach (1986) tabulates J 0 ⁑ ( x ) , J 1 ⁑ ( x ) , Y 0 ⁑ ( x ) , Y 1 ⁑ ( x ) , x = 0 ⁒ ( .1 ) ⁒ 8 , 20D or 18–20S.

  • β–Ί
  • Zhang and Jin (1996, pp. 185–195) tabulates J n ⁑ ( x ) , J n ⁑ ( x ) , Y n ⁑ ( x ) , Y n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 50 , 100 , x = 1 , 5, 10, 25, 50, 100, 9S; J n + Ξ± ⁑ ( x ) , J n + Ξ± ⁑ ( x ) , Y n + Ξ± ⁑ ( x ) , Y n + Ξ± ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 5 , 10 , 30 , 50 , 100 , Ξ± = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5 , 10 , 50 , 8S; real and imaginary parts of J n + Ξ± ⁑ ( z ) , J n + Ξ± ⁑ ( z ) , Y n + Ξ± ⁑ ( z ) , Y n + Ξ± ⁑ ( z ) , n = 0 ⁒ ( 1 ) ⁒ 15 , 20 ⁒ ( 10 ) ⁒ 50 , 100 , Ξ± = 0 , 1 2 , z = 4 + 2 ⁒ i , 20 + 10 ⁒ i , 8S.

  • β–Ί
  • Bickley et al. (1952) tabulates x n ⁒ I n ⁑ ( x ) or e x ⁒ I n ⁑ ( x ) , x n ⁒ K n ⁑ ( x ) or e x ⁒ K n ⁑ ( x ) , n = 2 ⁒ ( 1 ) ⁒ 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 or 0.1 ⁒ ( .1 ) ⁒ 20 , 10S.

  • β–Ί
  • Zhang and Jin (1996, pp. 240–250) tabulates I n ⁑ ( x ) , I n ⁑ ( x ) , K n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 50 , 100 , x = 1 , 5 , 10 , 25 , 50 , 100 , 9S; I n + Ξ± ⁑ ( x ) , I n + Ξ± ⁑ ( x ) , K n + Ξ± ⁑ ( x ) , K n + Ξ± ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 5 , 10, 30, 50, 100, Ξ± = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5, 10, 50, 8S; real and imaginary parts of I n + Ξ± ⁑ ( z ) , I n + Ξ± ⁑ ( z ) , K n + Ξ± ⁑ ( z ) , K n + Ξ± ⁑ ( z ) , n = 0 ⁒ ( 1 ) ⁒ 15 , 20(10)50, 100, Ξ± = 0 , 1 2 , z = 4 + 2 ⁒ i , 20 + 10 ⁒ i , 8S.

  • β–Ί
  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ⁑ ( x ) , 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , 𝗂 n ( 1 ) ⁑ ( x ) , 𝗂 n ( 1 ) ⁑ ( x ) , 𝗄 n ⁑ ( x ) , 𝗄 n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x ⁒ 𝗃 n ⁑ ( x ) , ( x ⁒ 𝗃 n ⁑ ( x ) ) , x ⁒ 𝗒 n ⁑ ( x ) , ( x ⁒ 𝗒 n ⁑ ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ⁑ ( z ) , 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) , 𝗄 n ⁑ ( z ) , n = 0 ⁒ ( 1 ) ⁒ 15 , 20(10)50, 100, z = 4 + 2 ⁒ i , 20 + 10 ⁒ i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • 27: 12.14 The Function W ⁑ ( a , x )
    β–Ί
    12.14.8 W ⁑ ( a , x ) = W ⁑ ( a , 0 ) ⁒ w 1 ⁑ ( a , x ) + W ⁑ ( a , 0 ) ⁒ w 2 ⁑ ( a , x ) .
    β–ΊHere w 1 ⁑ ( a , x ) and w 2 ⁑ ( a , x ) are the even and odd solutions of (12.2.3): … β–Ί
    12.14.10 w 2 ⁑ ( a , x ) = n = 0 β n ⁑ ( a ) ⁒ x 2 ⁒ n + 1 ( 2 ⁒ n + 1 ) ! ,
    β–ΊThe even and odd solutions of (12.2.3) (see §12.14(v)) are given by … β–ΊThe coefficients c 2 ⁒ r and d 2 ⁒ r are obtainable by equating real and imaginary parts in …
    28: 5.4 Special Values and Extrema
    β–Ί
    5.4.2 n !! = { 2 1 2 ⁒ n ⁒ Ξ“ ⁑ ( 1 2 ⁒ n + 1 ) , n ⁒  even , Ο€ 1 2 ⁒ 2 1 2 ⁒ n + 1 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ n + 1 ) , n ⁒  odd .
    β–Ί
    5.4.16 ⁑ ψ ⁑ ( i ⁒ y ) = 1 2 ⁒ y + Ο€ 2 ⁒ coth ⁑ ( Ο€ ⁒ y ) ,
    β–Ί
    5.4.17 ⁑ ψ ⁑ ( 1 2 + i ⁒ y ) = Ο€ 2 ⁒ tanh ⁑ ( Ο€ ⁒ y ) ,
    β–Ί
    5.4.18 ⁑ ψ ⁑ ( 1 + i ⁒ y ) = 1 2 ⁒ y + Ο€ 2 ⁒ coth ⁑ ( Ο€ ⁒ y ) .
    29: 26.2 Basic Definitions
    β–ΊFor the actual partitions ( Ο€ ) for n = 1 ⁒ ( 1 ) ⁒ 5 see Table 26.4.1. β–ΊThe integers whose sum is n are referred to as the parts in the partition. The example { 1 , 1 , 1 , 2 , 4 , 4 } has six parts, three of which equal 1. β–Ί
    Table 26.2.1: Partitions p ⁑ ( n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    n p ⁑ ( n ) n p ⁑ ( n ) n p ⁑ ( n )
    3 3 20 627 37 21637
    β–Ί
    30: 25.12 Polylogarithms
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.12.1: Dilogarithm function Li 2 ⁑ ( x ) , 20 x < 1 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ⁑ ( x + i ⁒ y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    β–ΊThe series also converges when | z | = 1 , provided that ⁑ s > 1 . … β–Ίvalid when ⁑ s > 0 and | ph ⁑ ( 1 z ) | < Ο€ , or ⁑ s > 1 and z = 1 . … β–Ίvalid when ⁑ s > 0 , ⁑ a > 0 or ⁑ s > 1 , ⁑ a = 0 . …