About the Project

normal%20values

AdvancedHelp

(0.000 seconds)

21—30 of 467 matching pages

21: 29.21 Tables
  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 22: 14.33 Tables
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 23: 18.39 Applications in the Physical Sciences
    Brief mention of non-unit normalized solutions in the case of mixed spectra appear, but as these solutions are not OP’s details appear elsewhere, as referenced. … By Table 18.3.1#12 the normalized stationary states and corresponding eigenvalues are … There is no need for a normalization constant here, as appropriate constants already appear in §18.36(vi). … Explicit normalization is given for the second, third, and fourth of these, paragraphs c) and d), below. … thus recapitulating, for Z = 1 , line 11 of Table 18.8.1, now shown with explicit normalization for the measure d r . …
    24: 35.4 Partitions and Zonal Polynomials
    Normalization
    Mean-Value
    25: 8.12 Uniform Asymptotic Expansions for Large Parameter
    8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
    8.12.4 Q ( a , z ) = 1 2 erfc ( η a / 2 ) + S ( a , η ) ,
    For numerical values of d k , n to 30D for k = 0 ( 1 ) 9 and n = 0 ( 1 ) N k , where N k = 28 4 k / 2 , see DiDonato and Morris (1986). …
    8.12.18 Q ( a , z ) P ( a , z ) } z a 1 2 e z Γ ( a ) ( d ( ± χ ) k = 0 A k ( χ ) z k / 2 k = 1 B k ( χ ) z k / 2 ) ,
    8.12.21 Q ( a , x ) = q
    26: 33.9 Expansions in Series of Bessel Functions
    The series (33.9.1) converges for all finite values of η and ρ . …
    33.9.3 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 η ) 2 + 1 ρ k = 2 + 1 b k t k / 2 I k ( 2 t ) , η > 0 ,
    33.9.4 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 | η | ) 2 + 1 ρ k = 2 + 1 b k t k / 2 J k ( 2 t ) , η < 0 .
    The series (33.9.3) and (33.9.4) converge for all finite positive values of | η | and ρ . …
    33.9.6 G ( η , ρ ) ρ ( + 1 2 ) λ ( η ) C ( η ) k = 2 + 1 ( 1 ) k b k t k / 2 K k ( 2 t ) ,
    27: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • H. R. McFarland and D. St. P. Richards (2001) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case. J. Multivariate Anal. 77 (1), pp. 21–53.
  • H. R. McFarland and D. St. P. Richards (2002) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. II. The heterogeneous case. J. Multivariate Anal. 82 (2), pp. 299–330.
  • J. P. Mills (1926) Table of the ratio: Area to bounding ordinate, for any portion of normal curve. Biometrika 18, pp. 395–400.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 28: 8.3 Graphics
    In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. …
    See accompanying text
    Figure 8.3.8: Γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . Principal value. … Magnify 3D Help
    See accompanying text
    Figure 8.3.9: γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . Principal value. … Magnify 3D Help
    See accompanying text
    Figure 8.3.14: Γ ( 2.5 , x + i y ) , 2.2 x 3 , 3 y 3 . Principal value. … Magnify 3D Help
    See accompanying text
    Figure 8.3.15: γ ( 2.5 , x + i y ) , 2.2 x 3 , 3 y 3 . Principal value. … Magnify 3D Help
    29: 24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    30: 28.16 Asymptotic Expansions for Large q
    §28.16 Asymptotic Expansions for Large q
    28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .