About the Project

normal%20values

AdvancedHelp

(0.001 seconds)

11—20 of 467 matching pages

11: 1.6 Vectors and Vector-Valued Functions
where 𝐧 is the unit vector normal to 𝐚 and 𝐛 whose direction is determined by the right-hand rule; see Figure 1.6.1. … where d 𝐒 is the surface element with an attached normal direction 𝐓 u × 𝐓 v . A surface is orientable if a continuously varying normal can be defined at all points of the surface. An orientable surface is oriented if suitable normals have been chosen. … Suppose S is an oriented surface with boundary S which is oriented so that its direction is clockwise relative to the normals of S . …
12: 28.19 Expansions in Series of me ν + 2 n Functions
Let q be a normal value28.12(i)) with respect to ν , and f ( z ) be a function that is analytic on a doubly-infinite open strip S that contains the real axis. …
13: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • S. Koizumi (1976) Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98 (4), pp. 865–889.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 14: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    These are based on the Liouville normal form of (1.13.29). … Applying equations (1.18.29) and (1.18.30), the complete set of normalized eigenfunctions being … Then orthogonality and normalization relations are …
    15: 28.15 Expansions for Small q
    §28.15(i) Eigenvalues λ ν ( q )
    28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
    28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
    16: 18.40 Methods of Computation
    There are many ways to implement these first two steps, noting that the expressions for α n and β n of equation (18.2.30) are of little practical numerical value, see Gautschi (2004) and Golub and Meurant (2010). …
    18.40.6 lim ε 0 + a b w ( x ) d x x + i ε x d x = a b w ( x ) d x x x i π w ( x ) ,
    Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Achieving precisions at this level shown above requires higher than normal computational precision, see Gautschi (2009). …
    17: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • P. A. Becker (1997) Normalization integrals of orthogonal Heun functions. J. Math. Phys. 38 (7), pp. 3692–3699.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • S. L. Belousov (1962) Tables of Normalized Associated Legendre Polynomials. Pergamon Press, The Macmillan Co., Oxford-New York.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 18: 33.7 Integral Representations
    33.7.2 H ( η , ρ ) = e i ρ ρ ( 2 + 1 ) ! C ( η ) 0 e t t i η ( t + 2 i ρ ) + i η d t ,
    33.7.3 H ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 0 ( exp ( i ( ρ tanh t 2 η t ) ) ( cosh t ) 2 + 2 + i ( 1 + t 2 ) exp ( ρ t + 2 η arctan t ) ) d t ,
    33.7.4 H + ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 1 i e i ρ t ( 1 t ) i η ( 1 + t ) + i η d t .
    Noninteger powers in (33.7.1)–(33.7.4) and the arctangent assume their principal values (§§4.2(i), 4.2(iv), 4.23(ii)).
    19: 8.4 Special Values
    §8.4 Special Values
    8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
    8.4.10 Q ( n + 1 , z ) = e z e n ( z ) ,
    20: 35.1 Special Notation
    All fractional or complex powers are principal values.
    a , b complex variables.
    | 𝐗 | determinant of 𝐗 (except when m = 1 where it means either determinant or absolute value, depending on the context).
    f ( 𝐗 ) complex-valued function with 𝐗 𝛀 .
    d 𝐇 normalized Haar measure on 𝐎 ( m ) .