About the Project

modulus and phase

AdvancedHelp

(0.001 seconds)

21—30 of 134 matching pages

21: 9.9 Zeros
They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. …
§9.9(ii) Relation to Modulus and Phase
Table 9.9.3: Complex zeros of Bi .
e π i / 3 β k Bi ( β k )
k modulus phase modulus phase
Table 9.9.4: Complex zeros of Bi .
e π i / 3 β k Bi ( β k )
k modulus phase modulus phase
22: 15.12 Asymptotic Approximations
  • (c)

    z = 1 2 and | ph c | π δ .

  • If | ph ( 1 z ) | < π , then (15.12.3) applies when | ph λ | 1 2 π δ . … If | ph ( z 1 ) | < π , then as λ with | ph λ | π δ , … If | ph z | < π , then as λ with | ph λ | π δ , … If | ph z | < π , then as λ with | ph λ | 1 2 π δ , …
    23: 10.40 Asymptotic Expansions for Large Argument
    Corresponding expansions for I ν ( z ) , K ν ( z ) , I ν ( z ) , and K ν ( z ) for other ranges of ph z are obtainable by combining (10.34.3), (10.34.4), (10.34.6), and their differentiated forms, with (10.40.2) and (10.40.4). … as z in | ph z | 1 2 π δ . … as z in | ph z | 3 2 π δ . … where χ ( ) = π 1 2 Γ ( 1 2 + 1 ) / Γ ( 1 2 + 1 2 ) ; see §9.7(i). …
    24: 9.12 Scorer Functions
    9.12.9 Hi ( z ) , Ai ( z e 2 π i / 3 ) , Ai ( z e 2 π i / 3 ) , | ph ( z ) | 2 3 π ,
    9.12.10 e 2 π i / 3 Hi ( z e 2 π i / 3 ) , Ai ( z ) , Ai ( z e ± 2 π i / 3 ) , π ± ph z 1 3 π .
    9.12.22 Hi ( z ) = 4 z 2 3 3 / 2 π 2 0 K 1 / 3 ( t ) ζ 2 + t 2 d t , | ph z | < 1 3 π ,
    25: 10.17 Asymptotic Expansions for Large Argument
    10.17.7 z 1 2 = exp ( 1 2 ln | z | + 1 2 i ph z ) .
    Corresponding expansions for other ranges of ph z can be obtained by combining (10.17.3), (10.17.5), (10.17.6) with the continuation formulas (10.11.1), (10.11.3), (10.11.4) (or (10.11.7), (10.11.8)), and also the connection formula given by the second of (10.4.4). … Also, b 0 ( ν ) = 1 , b 1 ( ν ) = ( 4 ν 2 + 3 ) / 8 , and for k 2 , …
    10.17.15 𝒱 z , i ( t ) { | z | , 0 ph z π , χ ( ) | z | , 1 2 π ph z 0  or  π ph z 3 2 π , 2 χ ( ) | z | , π < ph z 1 2 π  or  3 2 π ph z < 2 π ,
    where χ ( ) = π 1 2 Γ ( 1 2 + 1 ) / Γ ( 1 2 + 1 2 ) ; see §9.7(i). …
    26: 8.11 Asymptotic Approximations and Expansions
    8.11.5 P ( a , z ) z a e z Γ ( 1 + a ) ( 2 π a ) 1 2 e a z ( z / a ) a , a , | ph a | π δ .
    27: 32.11 Asymptotic Approximations for Real Variables
    32.11.24 s = ( exp ( π d 2 ) 1 ) 1 / 2 exp ( i ( 3 2 d 2 ln 2 1 4 π + χ ph Γ ( 1 2 i d 2 ) ) ) .
    28: 7.14 Integrals
    7.14.1 0 e 2 i a t erfc ( b t ) d t = 1 a π F ( a b ) + i 2 a ( 1 e ( a / b ) 2 ) , a , | ph b | < 1 4 π .
    7.14.2 0 e a t erf ( b t ) d t = 1 a e a 2 / ( 4 b 2 ) erfc ( a 2 b ) , a > 0 , | ph b | < 1 4 π ,
    29: 9.2 Differential Equation
    Table 9.2.1: Numerically satisfactory pairs of solutions of Airy’s equation.
    Pair Interval or Region
    Ai ( z ) , Ai ( z e 2 π i / 3 ) 1 3 π ph z π
    Ai ( z ) , Ai ( z e 2 π i / 3 ) π ph z 1 3 π
    Ai ( z e 2 π i / 3 ) | ph ( z ) | 2 3 π
    30: 25.10 Zeros
    25.10.2 ϑ ( t ) ph Γ ( 1 4 + 1 2 i t ) 1 2 t ln π
    is chosen to make Z ( t ) real, and ph Γ ( 1 4 + 1 2 i t ) assumes its principal value. …
    25.10.3 Z ( t ) = 2 n = 1 m cos ( ϑ ( t ) t ln n ) n 1 / 2 + R ( t ) , m = t / ( 2 π ) ,
    where R ( t ) = O ( t 1 / 4 ) as t . …
    25.10.4 R ( t ) = ( 1 ) m 1 ( 2 π t ) 1 / 4 cos ( t ( 2 m + 1 ) 2 π t 1 8 π ) cos ( 2 π t ) + O ( t 3 / 4 ) .