About the Project

modulus and phase

AdvancedHelp

(0.002 seconds)

11—20 of 134 matching pages

11: 33.2 Definitions and Basic Properties
33.2.7 H ± ( η , ρ ) = ( i ) e ( π η / 2 ) ± i σ ( η ) W i η , + 1 2 ( 2 i ρ ) ,
12: 9.5 Integral Representations
9.5.7 Ai ( z ) = e ζ π 0 exp ( z 1 / 2 t 2 ) cos ( 1 3 t 3 ) d t , | ph z | < π .
9.5.8 Ai ( z ) = e ζ ζ 1 / 6 π ( 48 ) 1 / 6 Γ ( 5 6 ) 0 e t t 1 / 6 ( 2 + t ζ ) 1 / 6 d t , | ph z | < 2 3 π .
13: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.11 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 e ν μ k = 0 ( 1 2 ) k b k ( λ ) ν k , ν , | ph ν | π 2 δ ,
11.11.15 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 ( 1 + 1 λ 2 λ ) ν e ν 1 λ 2 ( 1 λ 2 ) 1 / 4 , 0 < λ < 1 , | ph ν | π 2 δ .
11.11.18 𝐉 ν ( ν ) 2 1 / 3 3 2 / 3 Γ ( 2 3 ) ν 1 / 3 , ν , | ph ν | π δ ,
11.11.19 𝐄 ν ( ν ) 2 1 / 3 3 7 / 6 Γ ( 2 3 ) ν 1 / 3 , ν , | ph ν | π δ .
14: 10.3 Graphics
§10.3(i) Real Order and Variable
For the modulus and phase functions M ν ( x ) , θ ν ( x ) , N ν ( x ) , and ϕ ν ( x ) see §10.18. …
See accompanying text
Figure 10.3.4: θ 5 ( x ) , ϕ 5 ( x ) , 0 x 15 . Magnify
15: 15.6 Integral Representations
In (15.6.3) the point 1 / ( z 1 ) lies outside the integration contour, the contour cuts the real axis between t = 1 and 0 , at which point ph t = π and ph ( 1 + t ) = 0 . In (15.6.4) the point 1 / z lies outside the integration contour, and at the point where the contour cuts the negative real axis ph t = π and ph ( 1 t ) = 0 . …
16: 9.7 Asymptotic Expansions
9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
9.7.9 Ai ( z ) 1 π z 1 / 4 ( cos ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k ζ 2 k + sin ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
17: 4.2 Definitions
For ph z see §1.9(i). … For example, with the definition (4.2.5) the identity (4.8.7) is valid only when | ph z | < π , but with the closed definition the identity (4.8.7) is valid when | ph z | π . … The general value of the phase is given by … …where ph z [ π , π ] for the principal value of z a , and is unrestricted in the general case. …
18: 10.30 Limiting Forms
19: 7.7 Integral Representations
7.7.7 x e a 2 t 2 ( b 2 / t 2 ) d t = π 4 a ( e 2 a b erfc ( a x + ( b / x ) ) + e 2 a b erfc ( a x ( b / x ) ) ) , x > 0 , | ph a | < 1 4 π .
7.7.8 0 e a 2 t 2 ( b 2 / t 2 ) d t = π 2 a e 2 a b , | ph a | < 1 4 π , | ph b | < 1 4 π .
7.7.10 f ( z ) = 1 π 2 0 e π z 2 t / 2 t ( t 2 + 1 ) d t , | ph z | 1 4 π ,
7.7.11 g ( z ) = 1 π 2 0 t e π z 2 t / 2 t 2 + 1 d t , | ph z | 1 4 π ,
20: 11.6 Asymptotic Expansions
11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
§11.6(iii) Large | ν | , Fixed z / ν