About the Project

modulus

AdvancedHelp

(0.001 seconds)

31—40 of 532 matching pages

31: 9.2 Differential Equation
9.2.10 Bi ( z ) = e π i / 6 Ai ( z e 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) .
9.2.12 Ai ( z ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) = 0 ,
9.2.13 Bi ( z ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) = 0 .
9.2.14 Ai ( z ) = e π i / 3 Ai ( z e π i / 3 ) + e π i / 3 Ai ( z e π i / 3 ) ,
W = ( 1 / w ) d w / d z , where w is any nontrivial solution of (9.2.1). …
32: 19.13 Integrals of Elliptic Integrals
§19.13(i) Integration with Respect to the Modulus
33: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . … Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
34: 22.15 Inverse Functions
22.15.3 dn ( ζ , k ) = x , k x 1 ,
22.15.13 arccn ( x , k ) = x 1 d t ( 1 t 2 ) ( k 2 + k 2 t 2 ) , 1 x 1 ,
22.15.14 arcdn ( x , k ) = x 1 d t ( 1 t 2 ) ( t 2 k 2 ) , k x 1 .
22.15.16 arcsd ( x , k ) = 0 x d t ( 1 k 2 t 2 ) ( 1 + k 2 t 2 ) , 1 / k x 1 / k ,
22.15.17 arcnd ( x , k ) = 1 x d t ( t 2 1 ) ( 1 k 2 t 2 ) , 1 x 1 / k ,
35: 33.10 Limiting Forms for Large ρ or Large | η |
G 0 ( η , ρ ) 2 e π η ( ρ / π ) 1 / 2 K 1 ( ( 8 η ρ ) 1 / 2 ) ,
G 0 ( η , ρ ) 2 e π η ( 2 η / π ) 1 / 2 K 0 ( ( 8 η ρ ) 1 / 2 ) .
F 0 ( η , ρ ) = ( π ρ ) 1 / 2 J 1 ( ( 8 η ρ ) 1 / 2 ) + o ( | η | 1 / 4 ) ,
G 0 ( η , ρ ) = ( π ρ ) 1 / 2 Y 1 ( ( 8 η ρ ) 1 / 2 ) + o ( | η | 1 / 4 ) .
F 0 ( η , ρ ) = ( 2 π η ) 1 / 2 J 0 ( ( 8 η ρ ) 1 / 2 ) + o ( | η | 1 / 4 ) ,
36: 14.22 Graphics
See accompanying text
Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
37: 22.6 Elementary Identities
22.6.3 k 2 sc 2 ( z , k ) + 1 = dc 2 ( z , k ) = k 2 nc 2 ( z , k ) + k 2 ,
22.6.4 k 2 k 2 sd 2 ( z , k ) = k 2 ( cd 2 ( z , k ) 1 ) = k 2 ( 1 nd 2 ( z , k ) ) .
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.9 sd ( 2 z , k ) = 2 sd ( z , k ) cd ( z , k ) nd ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
§22.6(v) Change of Modulus
38: 19.4 Derivatives and Differential Equations
19.4.3 d 2 E ( k ) d k 2 = 1 k d K ( k ) d k = k 2 K ( k ) E ( k ) k 2 k 2 ,
Let D k = / k . …
19.4.8 ( k k 2 D k 2 + ( 1 3 k 2 ) D k k ) F ( ϕ , k ) = k sin ϕ cos ϕ ( 1 k 2 sin 2 ϕ ) 3 / 2 ,
19.4.9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 k 2 sin 2 ϕ .
If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …
39: 19.3 Graphics
See accompanying text
Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . Both functions are asymptotic to ln ( 4 x ) / 4 x as x ; see (19.2.19) and (19.2.20). … Magnify
See accompanying text
Figure 19.3.3: F ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then it has the value K ( 1 / k ) / k : put c = k 2 in (19.25.5) and use (19.25.1). Magnify 3D Help
See accompanying text
Figure 19.3.4: E ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then it has the value k E ( 1 / k ) + ( k 2 / k ) K ( 1 / k ) , with limit 1 as k 2 1 + : put c = k 2 in (19.25.7) and use (19.25.1). Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
See accompanying text
Figure 19.3.11: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . …On the branch cut ( k 2 > 1 ) it has the value k E ( 1 / k ) + ( k 2 / k ) K ( 1 / k ) , with limit 1 as k 2 1 + . Magnify 3D Help
40: 21.1 Special Notation
g , h positive integers.
S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
The function Θ ( ϕ | 𝐁 ) = θ ( ϕ / ( 2 π i ) | 𝐁 / ( 2 π i ) ) is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).