About the Project

modified Bessel equation

AdvancedHelp

(0.008 seconds)

21—30 of 66 matching pages

21: 13.11 Series
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
22: 28.34 Methods of Computation
§28.34(i) Characteristic Exponents
§28.34(ii) Eigenvalues
§28.34(iii) Floquet Solutions
§28.34(iv) Modified Mathieu Functions
For the modified functions we have: …
23: 13.8 Asymptotic Approximations for Large Parameters
13.8.11 U ( a , b , z ) 2 ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( a ) ( K b 1 ( 2 a z ) s = 0 p s ( z ) a s + z / a K b ( 2 a z ) s = 0 q s ( z ) a s ) ,
13.8.12 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a b ) Γ ( a ) ( I b 1 ( 2 a z ) s = 0 p s ( z ) a s z / a I b ( 2 a z ) s = 0 q s ( z ) a s ) ,
24: 2.8 Differential Equations with a Parameter
For other examples of uniform asymptotic approximations and expansions of special functions in terms of Bessel functions or modified Bessel functions of fixed order see §§13.8(iii), 13.21(i), 13.21(iv), 14.15(i), 14.15(iii), 14.20(vii), 15.12(iii), 18.15(i), 18.15(iv), 18.24, 33.20(iv). …
25: 10.74 Methods of Computation
Similar observations apply to the computation of modified Bessel functions, spherical Bessel functions, and Kelvin functions. …
§10.74(vii) Integrals
Kontorovich–Lebedev Transform
26: 10.32 Integral Representations
10.32.13 K ν ( z ) = ( 1 2 z ) ν 4 π i c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 z ) 2 t d t , c > max ( ν , 0 ) , | ph z | < 1 2 π .
27: Bibliography T
  • N. M. Temme (1975) On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys. 19 (3), pp. 324–337.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • M. J. Tretter and G. W. Walster (1980) Further comments on the computation of modified Bessel function ratios. Math. Comp. 35 (151), pp. 937–939.
  • 28: 28.23 Expansions in Series of Bessel Functions
    §28.23 Expansions in Series of Bessel Functions
    𝒞 μ ( 3 ) = H μ ( 1 ) ,
    28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
    When j = 2 , 3 , 4 the series in the even-numbered equations converge for z > 0 and | cosh z | > 1 , and the series in the odd-numbered equations converge for z > 0 and | sinh z | > 1 . …
    29: 28.8 Asymptotic Expansions for Large q
    Barrett’s Expansions
    Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). …The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. … Dunster (1994a) supplies uniform asymptotic approximations for numerically satisfactory pairs of solutions of Mathieu’s equation (28.2.1). … Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
    30: 10.43 Integrals
    §10.43(i) Indefinite Integrals
    §10.43(iii) Fractional Integrals
    §10.43(v) Kontorovich–Lebedev Transform