About the Project

irregular%20singularities%20of%20rank%201

AdvancedHelp

(0.002 seconds)

11—20 of 206 matching pages

11: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • B. I. Schneider, J. Segura, A. Gil, X. Guan, and K. Bartschat (2010) A new Fortran 90 program to compute regular and irregular associated Legendre functions. Comput. Phys. Comm. 181 (12), pp. 2091–2097.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 12: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. Tables of primes (§27.21) reveal great irregularity in their distribution. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    13: 8 Incomplete Gamma and Related
    Functions
    14: 28 Mathieu Functions and Hill’s Equation
    15: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 16: 23 Weierstrass Elliptic and Modular
    Functions
    17: Bibliography W
  • S. S. Wagstaff (1978) The irregular primes to 125000 . Math. Comp. 32 (142), pp. 583–591.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • R. Wong and J. F. Lin (1978) Asymptotic expansions of Fourier transforms of functions with logarithmic singularities. J. Math. Anal. Appl. 64 (1), pp. 173–180.
  • R. Wong (1977) Asymptotic expansions of Hankel transforms of functions with logarithmic singularities. Comput. Math. Appl. 3 (4), pp. 271–286.
  • 18: 33.14 Definitions and Basic Properties
    §33.14(i) Coulomb Wave Equation
    Again, there is a regular singularity at r = 0 with indices + 1 and , and an irregular singularity of rank 1 at r = . …
    §33.14(iii) Irregular Solution h ( ϵ , ; r )
    33.14.7 h ( ϵ , ; r ) = Γ ( + 1 κ ) π κ ( W κ , + 1 2 ( 2 r / κ ) + ( 1 ) S ( ϵ , r ) Γ ( + 1 + κ ) 2 ( 2 + 1 ) ! M κ , + 1 2 ( 2 r / κ ) ) ,
    19: 2.7 Differential Equations
    All other singularities are classified as irregular. …
    §2.7(ii) Irregular Singularities of Rank 1
    Thus a regular singularity has rank 0. The most common type of irregular singularity for special functions has rank 1 and is located at infinity. … For irregular singularities of nonclassifiable rank, a powerful tool for finding the asymptotic behavior of solutions, complete with error bounds, is as follows: …
    20: 30.2 Differential Equations
    This equation has regular singularities at z = ± 1 with exponents ± 1 2 μ and an irregular singularity of rank 1 at z = (if γ 0 ). … …