About the Project

integrals of modified Bessel functions

AdvancedHelp

(0.023 seconds)

21—30 of 61 matching pages

21: 10.38 Derivatives with Respect to Order
22: Bibliography C
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • 23: 13.10 Integrals
    13.10.8 1 2 π i ( 0 + ) e t z t a 𝐌 ( a , b , y / t ) d t = 1 Γ ( a ) z 1 2 ( 2 a b 1 ) y 1 2 ( 1 b ) I b 1 ( 2 z y ) , z > 0 .
    13.10.9 1 2 π i ( 0 + ) e t z t a U ( a , b , y / t ) d t = 2 z 1 2 ( 2 a b 1 ) y 1 2 ( 1 b ) Γ ( a ) Γ ( a b + 1 ) K b 1 ( 2 z y ) , z > 0 .
    24: 13.23 Integrals
    13.23.6 1 Γ ( 1 + 2 μ ) 2 π i ( 0 + ) e z t + 1 2 t 1 t κ M κ , μ ( t 1 ) d t = z κ 1 2 Γ ( 1 2 + μ κ ) I 2 μ ( 2 z ) , z > 0 .
    13.23.7 1 2 π i ( 0 + ) e z t + 1 2 t 1 t κ W κ , μ ( t 1 ) d t = 2 z κ 1 2 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) K 2 μ ( 2 z ) , z > 0 .
    25: 11.5 Integral Representations
    11.5.7 I ν ( x ) 𝐋 ν ( x ) = 2 ( 1 2 x ) ν π Γ ( ν + 1 2 ) 0 ( 1 + t 2 ) ν 1 2 sin ( x t ) d t , x > 0 , ν < 1 2 .
    26: 10.54 Integral Representations
    27: 11.14 Tables
    §11.14(ii) Struve Functions
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • §11.14(iii) Integrals
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • §11.14(v) Incomplete Functions
    28: 12.7 Relations to Other Functions
    §12.7 Relations to Other Functions
    §12.7(i) Hermite Polynomials
    §12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
    §12.7(iii) Modified Bessel Functions
    §12.7(iv) Confluent Hypergeometric Functions
    29: 11.9 Lommel Functions
    §11.9 Lommel Functions
    The inhomogeneous Bessel differential equation …
    §11.9(ii) Expansions in Series of Bessel Functions
    30: 11.15 Approximations
    §11.15(i) Expansions in Chebyshev Series
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ( x ) , 𝐋 1 ( x ) , 0 x 16 , and I 0 ( x ) 𝐋 0 ( x ) , I 1 ( x ) 𝐋 1 ( x ) , x 16 ; the coefficients are to 20D.

  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.