About the Project

integral%20equations%20and%20representations

AdvancedHelp

(0.004 seconds)

1—10 of 14 matching pages

1: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • I. Mező (2020) An integral representation for the Lambert W function.
  • J. C. P. Miller (1946) The Airy Integral, Giving Tables of Solutions of the Differential Equation y ′′ = x y . British Association for the Advancement of Science, Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
  • 2: Bibliography C
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990b) On a Tricomi series representation for the generalized exponential integral. Internat. J. Comput. Math. 31, pp. 257–262.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • J. N. L. Connor, P. R. Curtis, and D. Farrelly (1983) A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives. Molecular Phys. 48 (6), pp. 1305–1330.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 3: Bibliography K
  • A. Ya. Kazakov and S. Yu. Slavyanov (1996) Integral equations for special functions of Heun class. Methods Appl. Anal. 3 (4), pp. 447–456.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • A. I. Kheyfits (2004) Closed-form representations of the Lambert W function. Fract. Calc. Appl. Anal. 7 (2), pp. 177–190.
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • 4: Bibliography V
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin (1968) Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, RI.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 5: 25.12 Polylogarithms
    The remainder of the equations in this subsection apply to principal branches. … The right-hand side is called Clausen’s integral. …
    Integral Representation
    The Fermi–Dirac and Bose–Einstein integrals are defined by … In terms of polylogarithms …
    6: 19.36 Methods of Computation
    Legendre’s integrals can be computed from symmetric integrals by using the relations in §19.25(i). … Complete cases of Legendre’s integrals and symmetric integrals can be computed with quadratic convergence by the AGM method (including Bartky transformations), using the equations in §19.8(i) and §19.22(ii), respectively. … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … Numerical quadrature is slower than most methods for the standard integrals but can be useful for elliptic integrals that have complicated representations in terms of standard integrals. …
    7: 25.11 Hurwitz Zeta Function
    §25.11(iii) Representations by the Euler–Maclaurin Formula
    §25.11(iv) Series Representations
    §25.11(vii) Integral Representations
    §25.11(viii) Further Integral Representations
    §25.11(x) Further Series Representations
    8: 14.30 Spherical and Spheroidal Harmonics
    Explicit Representation
    See also (34.3.22), and for further related integrals see Askey et al. (1986). … For a series representation of the product of two Dirac deltas in terms of products of spherical harmonics see §1.17(iii). … As an example, Laplace’s equation 2 W = 0 in spherical coordinates (§1.5(ii)): … In the quantization of angular momentum the spherical harmonics Y l , m ( θ , ϕ ) are normalized solutions of the eigenvalue equations
    9: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • É. Goursat (1881) Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Ann. Sci. École Norm. Sup. (2) 10, pp. 3–142 (French).
  • 10: 36.5 Stokes Sets
    where x ± are the two smallest positive roots of the equationwhere u satisfies the equationHere u is the root of the equationwhere u is the root of the equationwhere u is the positive root of the equation