About the Project

integral representation of Laguerre polynomials

AdvancedHelp

(0.006 seconds)

1—10 of 14 matching pages

1: 18.10 Integral Representations
Laguerre
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
Laguerre
2: 18.18 Sums
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre
3: 18.17 Integrals
Laguerre
Ultraspherical
Legendre
Laguerre
Laguerre
4: Bibliography
  • A. Apelblat (1991) Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42 (5), pp. 708–714.
  • R. Askey and J. Wimp (1984) Associated Laguerre and Hermite polynomials. Proc. Roy. Soc. Edinburgh 96A, pp. 15–37.
  • R. Askey and J. Fitch (1969) Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26 (2), pp. 411–437.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 5: Bibliography L
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart (2016) The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202, pp. 5–41.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 6: 33.14 Definitions and Basic Properties
    The function s ( ϵ , ; r ) has the following properties:
    33.14.13 0 s ( ϵ 1 , ; r ) s ( ϵ 2 , ; r ) d r = δ ( ϵ 1 ϵ 2 ) , ϵ 1 , ϵ 2 > 0 ,
    When ϵ = 1 / n 2 , n = + 1 , + 2 , , s ( ϵ , ; r ) is exp ( r / n ) times a polynomial in r / n , and
    33.14.14 ϕ n , ( r ) = ( 1 ) + 1 + n ( 2 / n 3 ) 1 / 2 s ( 1 / n 2 , ; r ) = ( 1 ) + 1 + n n + 2 ( ( n 1 ) ! ( n + ) ! ) 1 / 2 ( 2 r ) + 1 e r / n L n 1 ( 2 + 1 ) ( 2 r / n )
    33.14.15 0 ϕ m , ( r ) ϕ n , ( r ) d r = δ m , n .
    7: Bibliography E
  • G. P. Egorychev (1984) Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, Providence, RI.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2008) Note on the X 1 -Laguerre orthogonal polynomials.
  • J. A. Ewell (1990) A new series representation for ζ ( 3 ) . Amer. Math. Monthly 97 (3), pp. 219–220.
  • 8: Bibliography M
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • J. C. Mason (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. In Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), Vol. 49, pp. 169–178.
  • I. Mező (2020) An integral representation for the Lambert W function.
  • C. Micu and E. Papp (2005) Applying q -Laguerre polynomials to the derivation of q -deformed energies of oscillator and Coulomb systems. Romanian Reports in Physics 57 (1), pp. 25–34.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 9: Bibliography K
  • A. I. Kheyfits (2004) Closed-form representations of the Lambert W function. Fract. Calc. Appl. Anal. 7 (2), pp. 177–190.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 10: 1.17 Integral and Series Representations of the Dirac Delta
    §1.17(ii) Integral Representations
    Sine and Cosine Functions
    Legendre Polynomials (§§14.7(i) and 18.3)
    Laguerre Polynomials18.3)
    Hermite Polynomials18.3)